Prediction of mental health risk in adolescents

IF 58.7 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Elliot D. Hill, Pratik Kashyap, Elizabeth Raffanello, Yun Wang, Terrie E. Moffitt, Avshalom Caspi, Matthew Engelhard, Jonathan Posner
{"title":"Prediction of mental health risk in adolescents","authors":"Elliot D. Hill, Pratik Kashyap, Elizabeth Raffanello, Yun Wang, Terrie E. Moffitt, Avshalom Caspi, Matthew Engelhard, Jonathan Posner","doi":"10.1038/s41591-025-03560-7","DOIUrl":null,"url":null,"abstract":"<p>Prospective prediction of mental health risk in adolescence can facilitate early preventive interventions. Here, using psychosocial questionnaires and neuroimaging measures from over 11,000 children in the Adolescent Brain and Cognitive Development Study, we trained neural network models to stratify general psychopathology risk. The model trained on current symptoms accurately predicted which participants would convert into the highest psychiatric illness risk group in the following year (area under the receiver operating characteristic curve = 0.84). The model trained solely on potential etiologies or disease mechanisms achieved an area under the receiver operating characteristic curve of 0.75 without relying on the child’s current symptom burden. Sleep disturbances emerged as the most influential predictor of high-risk status, surpassing adverse childhood experiences and family mental health history. Including neuroimaging measures did not enhance predictive performance. These findings suggest that artificial intelligence models trained on readily available psychosocial questionnaires can effectively predict future psychiatric risk while highlighting potential targets for intervention. This is a promising step toward artificial intelligence-based mental health screening for clinical decision support systems.</p>","PeriodicalId":19037,"journal":{"name":"Nature Medicine","volume":"40 1","pages":""},"PeriodicalIF":58.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41591-025-03560-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Prospective prediction of mental health risk in adolescence can facilitate early preventive interventions. Here, using psychosocial questionnaires and neuroimaging measures from over 11,000 children in the Adolescent Brain and Cognitive Development Study, we trained neural network models to stratify general psychopathology risk. The model trained on current symptoms accurately predicted which participants would convert into the highest psychiatric illness risk group in the following year (area under the receiver operating characteristic curve = 0.84). The model trained solely on potential etiologies or disease mechanisms achieved an area under the receiver operating characteristic curve of 0.75 without relying on the child’s current symptom burden. Sleep disturbances emerged as the most influential predictor of high-risk status, surpassing adverse childhood experiences and family mental health history. Including neuroimaging measures did not enhance predictive performance. These findings suggest that artificial intelligence models trained on readily available psychosocial questionnaires can effectively predict future psychiatric risk while highlighting potential targets for intervention. This is a promising step toward artificial intelligence-based mental health screening for clinical decision support systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Medicine
Nature Medicine 医学-生化与分子生物学
CiteScore
100.90
自引率
0.70%
发文量
525
审稿时长
1 months
期刊介绍: Nature Medicine is a monthly journal publishing original peer-reviewed research in all areas of medicine. The publication focuses on originality, timeliness, interdisciplinary interest, and the impact on improving human health. In addition to research articles, Nature Medicine also publishes commissioned content such as News, Reviews, and Perspectives. This content aims to provide context for the latest advances in translational and clinical research, reaching a wide audience of M.D. and Ph.D. readers. All editorial decisions for the journal are made by a team of full-time professional editors. Nature Medicine consider all types of clinical research, including: -Case-reports and small case series -Clinical trials, whether phase 1, 2, 3 or 4 -Observational studies -Meta-analyses -Biomarker studies -Public and global health studies Nature Medicine is also committed to facilitating communication between translational and clinical researchers. As such, we consider “hybrid” studies with preclinical and translational findings reported alongside data from clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信