Activation of Semiconductor/Electrocatalyst/Electrolyte Interfaces Through Ligand Engineering for Boosting Photoelectrochemical Water Splitting

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chenglong Li, Saqib Mujtaba, Jingjing Quan, Li Xu, Xingming Ning, Pei Chen, Zhongwei An, Xinbing Chen
{"title":"Activation of Semiconductor/Electrocatalyst/Electrolyte Interfaces Through Ligand Engineering for Boosting Photoelectrochemical Water Splitting","authors":"Chenglong Li,&nbsp;Saqib Mujtaba,&nbsp;Jingjing Quan,&nbsp;Li Xu,&nbsp;Xingming Ning,&nbsp;Pei Chen,&nbsp;Zhongwei An,&nbsp;Xinbing Chen","doi":"10.1002/adfm.202501262","DOIUrl":null,"url":null,"abstract":"<p>The loading of transition-metal oxyhydroxide (TMOH) on semiconductor (SC) has been recognized as a promising approach for promoting photoelectrochemical (PEC) water splitting. Nonetheless, major challenges such as substantial carrier recombination and slow surface water oxidation continue to hinder the achievement of desirable PEC performance. This study proposes a feasible ligand engineering strategy to simultaneously boost charge separation and surface catalytic kinetics through coordinating 2-methylimidazole (2-MI) within a SC/TMOH system. In situ ultraviolet/visible spectroelectrochemistry (UV/vis-SEC) and density functional theory (DFT) calculations show that the coordination of the 2-MI ligand influences SC/TMOH and TMOH/electrolyte interfaces, notably enhancing the dynamics of hole transfer while simultaneously reducing the adsorption of oxygen-containing intermediates. As anticipated, the BiVO<sub>4</sub>/FeNiOOH/2-MI photoanode demonstrates an impressive photocurrent of 6.52 mA cm<sup>−2</sup> at 1.23 V<sub>RHE</sub>, featuring excellent photostability and a low onset potential of 0.35 V<sub>RHE</sub>. Additionally, the 2-MI molecule can be employed in the development of alternative configurations, such as BiVO<sub>4</sub>/FeNiOOH (soak)/2-MI, to improve PEC efficiency. This work opens a new horizon in designing of desirable photoanodes for efficient and stable PEC water splitting.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 30","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202501262","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The loading of transition-metal oxyhydroxide (TMOH) on semiconductor (SC) has been recognized as a promising approach for promoting photoelectrochemical (PEC) water splitting. Nonetheless, major challenges such as substantial carrier recombination and slow surface water oxidation continue to hinder the achievement of desirable PEC performance. This study proposes a feasible ligand engineering strategy to simultaneously boost charge separation and surface catalytic kinetics through coordinating 2-methylimidazole (2-MI) within a SC/TMOH system. In situ ultraviolet/visible spectroelectrochemistry (UV/vis-SEC) and density functional theory (DFT) calculations show that the coordination of the 2-MI ligand influences SC/TMOH and TMOH/electrolyte interfaces, notably enhancing the dynamics of hole transfer while simultaneously reducing the adsorption of oxygen-containing intermediates. As anticipated, the BiVO4/FeNiOOH/2-MI photoanode demonstrates an impressive photocurrent of 6.52 mA cm−2 at 1.23 VRHE, featuring excellent photostability and a low onset potential of 0.35 VRHE. Additionally, the 2-MI molecule can be employed in the development of alternative configurations, such as BiVO4/FeNiOOH (soak)/2-MI, to improve PEC efficiency. This work opens a new horizon in designing of desirable photoanodes for efficient and stable PEC water splitting.

Abstract Image

Abstract Image

通过配体工程激活半导体/电催化剂/电解质界面促进光电化学水分解
在半导体(SC)上负载过渡金属氢氧化物(TMOH)被认为是促进光电化学(PEC)水分解的一种很有前途的方法。然而,主要的挑战,如大量的载体重组和缓慢的地表水氧化,仍然阻碍着实现理想的PEC性能。本研究提出了一种可行的配体工程策略,通过在SC/TMOH体系中配位2-甲基咪唑(2-MI),同时促进电荷分离和表面催化动力学。原位紫外/可见光谱电化学(UV/vis-SEC)和密度泛函理论(DFT)计算表明,2-MI配体的配位影响SC/TMOH和TMOH/电解质界面,显著增强空穴转移动力学,同时减少含氧中间体的吸附。正如预期的那样,BiVO4/FeNiOOH/2- mi光阳极在1.23 VRHE下显示出令人印象深刻的6.52 mA cm - 2光电流,具有出色的光稳定性和0.35 VRHE的低起始电位。此外,2-MI分子可以用于开发替代配置,例如BiVO4/FeNiOOH(浸泡)/2-MI,以提高PEC效率。本研究为高效稳定的PEC水分解光阳极的设计开辟了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信