Inflammation and epithelial-mesenchymal transition in a CFTR-depleted human bronchial epithelial cell line revealed by proteomics and human organ-on-a-chip.

Domenico Mattoscio, Luis A Baeza, Haiqing Bai, Tommaso Colangelo, Simone Castagnozzi, Marta Marzotto, Maria Concetta Cufaro, Virginia Lotti, Yu-Chieh Yuan, Matteo Mucci, Longlong Si, Mariachiara Zuccarini, Maria Tredicine, Simona D'Orazio, Damiana Pieragostino, Piero Del Boccio, Claudio Sorio, Marco Trerotola, Mario Romano, Roberto Plebani
{"title":"Inflammation and epithelial-mesenchymal transition in a CFTR-depleted human bronchial epithelial cell line revealed by proteomics and human organ-on-a-chip.","authors":"Domenico Mattoscio, Luis A Baeza, Haiqing Bai, Tommaso Colangelo, Simone Castagnozzi, Marta Marzotto, Maria Concetta Cufaro, Virginia Lotti, Yu-Chieh Yuan, Matteo Mucci, Longlong Si, Mariachiara Zuccarini, Maria Tredicine, Simona D'Orazio, Damiana Pieragostino, Piero Del Boccio, Claudio Sorio, Marco Trerotola, Mario Romano, Roberto Plebani","doi":"10.1111/febs.70050","DOIUrl":null,"url":null,"abstract":"<p><p>Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, leading to chronic, unresolved inflammation of the airways due to uncontrolled recruitment of polymorphonuclear leukocytes (PMNs). Evidence indicates that CFTR loss-of-function, in addition to promoting a pro-inflammatory phenotype, is associated with an increased risk of developing cancer, suggesting that CFTR can exert tumor-suppressor functions. Three-dimensional (3D) in vitro culture models, such as the CF lung airway-on-a-chip, can be suitable for studying PMN recruitment, as well as events of cancerogenesis, that is epithelial cell invasion and migration, in CF. To gather insight into the pathobiology of CFTR loss-of-function, we generated CFTR-knockout (KO) clones of the 16HBE14o- human bronchial cell line by CRISPR/Cas9 gene editing, and performed a comparative proteomic analysis of these clones with their wild-type (WT) counterparts. Systematic signaling pathway analysis of CFTR-KO clones revealed modulation of inflammation, PMN recruitment, epithelial cell migration, and epithelial-mesenchymal transition. Using a latest-generation organ-on-a-chip microfluidic platform, we confirmed that CFTR-KO enhanced PMN recruitment and epithelial cell invasion of the endothelial layer. Thus, a dysfunctional CFTR affects multiple pathways in the airway epithelium that ultimately contribute to sustained inflammation and cancerogenesis in CF.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, leading to chronic, unresolved inflammation of the airways due to uncontrolled recruitment of polymorphonuclear leukocytes (PMNs). Evidence indicates that CFTR loss-of-function, in addition to promoting a pro-inflammatory phenotype, is associated with an increased risk of developing cancer, suggesting that CFTR can exert tumor-suppressor functions. Three-dimensional (3D) in vitro culture models, such as the CF lung airway-on-a-chip, can be suitable for studying PMN recruitment, as well as events of cancerogenesis, that is epithelial cell invasion and migration, in CF. To gather insight into the pathobiology of CFTR loss-of-function, we generated CFTR-knockout (KO) clones of the 16HBE14o- human bronchial cell line by CRISPR/Cas9 gene editing, and performed a comparative proteomic analysis of these clones with their wild-type (WT) counterparts. Systematic signaling pathway analysis of CFTR-KO clones revealed modulation of inflammation, PMN recruitment, epithelial cell migration, and epithelial-mesenchymal transition. Using a latest-generation organ-on-a-chip microfluidic platform, we confirmed that CFTR-KO enhanced PMN recruitment and epithelial cell invasion of the endothelial layer. Thus, a dysfunctional CFTR affects multiple pathways in the airway epithelium that ultimately contribute to sustained inflammation and cancerogenesis in CF.

蛋白质组学和人体器官芯片揭示了去除了 CFTR 的人支气管上皮细胞系中的炎症和上皮-间质转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信