Capture and lyase-triggered release of circulating tumor cells using a disposable microfluidic chip embedded with core/shell nylon-6/Ca(II)-alginate immunofiber mats.

Hung-Yen Ke, Chi-Jung Chang, Shih-Ying Sung, Chien-Sung Tsai, Feng-Yen Lin, Jem-Kun Chen
{"title":"Capture and lyase-triggered release of circulating tumor cells using a disposable microfluidic chip embedded with core/shell nylon-6/Ca(II)-alginate immunofiber mats.","authors":"Hung-Yen Ke, Chi-Jung Chang, Shih-Ying Sung, Chien-Sung Tsai, Feng-Yen Lin, Jem-Kun Chen","doi":"10.1039/d4tb02226b","DOIUrl":null,"url":null,"abstract":"<p><p>High-efficiency capture, release, and reculture of circulating tumor cells (CTCs) can significantly advance individualized cancer treatments. To achieve efficient CTC release without compromising their viability for subsequent reculture, an effective CTC capture/release system was developed. Nylon-6 (N6) and a cross-linked alginate hydrogel with Ca(II) were used as the shell and core, respectively, to prepare N6/Ca-Alg immunofiber mats using coaxial electrospinning. A 3 wt% concentration of Ca(II) was used to increase the viscosity of the alginate solution and generate a degradable coating on the N6 fiber. After modification with streptavidin and anti-EpCAM, the N6/Ca-Alg immunofiber mat was embedded within a disposable microfluidic chip to investigate the capture capacity of CTCs. The maximum adsorption capacity of CTCs was approximately 34 cells per mm<sup>2</sup>, while the viability of the captured cells was 95.1% after being released from the fibrous mats. The outer Ca-alginate hydrogel coating effectively enhanced the viability of the released cells for reculture. In spiked blood samples, our microfluidic system was able to specifically identify DLD1 cells from 10 mL of human whole blood at a concentration of 65.6 cells per mL with 67.9% efficiency within 30 minutes. Under the flow of alginate lyase solution at 0.4 mg mL<sup>-1</sup>, the reculture efficiency of the released cells after 7 days reached 274.5%. Our proposed method provides an ideal fibrous mat to be embedded within a microfluidic chip for capturing and releasing CTCs for precision medicine applications, using recultured CTCs in individualized anti-tumor therapies.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4tb02226b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-efficiency capture, release, and reculture of circulating tumor cells (CTCs) can significantly advance individualized cancer treatments. To achieve efficient CTC release without compromising their viability for subsequent reculture, an effective CTC capture/release system was developed. Nylon-6 (N6) and a cross-linked alginate hydrogel with Ca(II) were used as the shell and core, respectively, to prepare N6/Ca-Alg immunofiber mats using coaxial electrospinning. A 3 wt% concentration of Ca(II) was used to increase the viscosity of the alginate solution and generate a degradable coating on the N6 fiber. After modification with streptavidin and anti-EpCAM, the N6/Ca-Alg immunofiber mat was embedded within a disposable microfluidic chip to investigate the capture capacity of CTCs. The maximum adsorption capacity of CTCs was approximately 34 cells per mm2, while the viability of the captured cells was 95.1% after being released from the fibrous mats. The outer Ca-alginate hydrogel coating effectively enhanced the viability of the released cells for reculture. In spiked blood samples, our microfluidic system was able to specifically identify DLD1 cells from 10 mL of human whole blood at a concentration of 65.6 cells per mL with 67.9% efficiency within 30 minutes. Under the flow of alginate lyase solution at 0.4 mg mL-1, the reculture efficiency of the released cells after 7 days reached 274.5%. Our proposed method provides an ideal fibrous mat to be embedded within a microfluidic chip for capturing and releasing CTCs for precision medicine applications, using recultured CTCs in individualized anti-tumor therapies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信