Ayşe Hümeyra Dur Karasayar, İbrahim Kulaç, Nilgün Kapucuoğlu
{"title":"Advances in Breast Cancer Care: The Role of Artificial Intelligence and Digital Pathology in Precision Medicine.","authors":"Ayşe Hümeyra Dur Karasayar, İbrahim Kulaç, Nilgün Kapucuoğlu","doi":"10.4274/ejbh.galenos.2025.2024-12-8","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) and digital pathology are transforming breast cancer management by addressing the limitations inherent in traditional histopathological methods. The application of machine learning algorithms has enhanced the ability of AI systems to classify breast cancer subtypes, grade tumors, and quantify key biomarkers, thereby improving diagnostic accuracy and prognostic precision. Furthermore, AI-powered image analysis has demonstrated superiority in detecting lymph node metastases, contributing to more precise staging, treatment planning, and reduced evaluation time. The ability of AI to predict molecular markers, including human epidermal growth factor receptor 2 status, BRCA mutations and homologus recombination deficiency, offers substantial potential for the development of personalized treatment strategies. A collaborative approach between pathologists and AI systems is essential to fully harness the potential of this technology. Although AI provides automation and objective analysis, human expertise remains indispensable for the interpretation of results and clinical decision-making. This partnership is anticipated to transform breast cancer care by enhancing patient outcomes and optimizing treatment approaches.</p>","PeriodicalId":93996,"journal":{"name":"European journal of breast health","volume":" ","pages":"93-100"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934827/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of breast health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4274/ejbh.galenos.2025.2024-12-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/3 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial intelligence (AI) and digital pathology are transforming breast cancer management by addressing the limitations inherent in traditional histopathological methods. The application of machine learning algorithms has enhanced the ability of AI systems to classify breast cancer subtypes, grade tumors, and quantify key biomarkers, thereby improving diagnostic accuracy and prognostic precision. Furthermore, AI-powered image analysis has demonstrated superiority in detecting lymph node metastases, contributing to more precise staging, treatment planning, and reduced evaluation time. The ability of AI to predict molecular markers, including human epidermal growth factor receptor 2 status, BRCA mutations and homologus recombination deficiency, offers substantial potential for the development of personalized treatment strategies. A collaborative approach between pathologists and AI systems is essential to fully harness the potential of this technology. Although AI provides automation and objective analysis, human expertise remains indispensable for the interpretation of results and clinical decision-making. This partnership is anticipated to transform breast cancer care by enhancing patient outcomes and optimizing treatment approaches.