Efficient Inductive Link Design: A Systematic Method for Optimum Biomedical Wireless Power Transfer in Area-Constrained Implants

Asif Iftekhar Omi;Anyu Jiang;Baibhab Chatterjee
{"title":"Efficient Inductive Link Design: A Systematic Method for Optimum Biomedical Wireless Power Transfer in Area-Constrained Implants","authors":"Asif Iftekhar Omi;Anyu Jiang;Baibhab Chatterjee","doi":"10.1109/TBCAS.2025.3531995","DOIUrl":null,"url":null,"abstract":"In the context of implantable bioelectronics, this work provides new insights into maximizing biomedical wireless power transfer (BWPT) via the systematic development of inductive links. This approach addresses the specific challenges of power transfer efficiency (PTE) optimization within the spatial/area constraints of bio-implants embedded in tissue. Key contributions include the derivation of an optimal self-inductance with S-parameter-based analyses leading to the co-design of planar spiral coils and L-section impedance matching networks. To validate the proposed design methodology, two coil prototypes— one symmetric (type-1) and one asymmetric (type-2)— were fabricated and tested for PTE in pork tissue. Targeting a 20 MHz design frequency, the type-1 coil demonstrated a state-of-the-art PTE of <inline-formula><tex-math>$\\sim$</tex-math></inline-formula> 4% (channel length = 15 mm) with a return loss (RL) <inline-formula><tex-math>$&gt;$</tex-math></inline-formula> 20 dB on both the input and output sides, within an area constraint of <inline-formula><tex-math>$&lt;$</tex-math></inline-formula> 18<inline-formula><tex-math>$\\times$</tex-math></inline-formula>18 mm<inline-formula><tex-math>${}^{2}$</tex-math></inline-formula>. In contrast, the type-2 coil achieved a PTE of <inline-formula><tex-math>$\\sim$</tex-math></inline-formula> 2% with an RL <inline-formula><tex-math>$&gt;$</tex-math></inline-formula> 15 dB, for a smaller receiving coil area of <inline-formula><tex-math>$&lt;$</tex-math></inline-formula> 5<inline-formula><tex-math>$\\times$</tex-math></inline-formula>5 mm<inline-formula><tex-math>${}^{2}$</tex-math></inline-formula> for the same tissue environment. To complement the coils, we demonstrate a 65 nm test chip with an integrated energy harvester, which includes a 30-stage rectifier and low-dropout regulator (LDO), producing a stable <inline-formula><tex-math>$\\sim$</tex-math></inline-formula> 1V DC output within tissue medium, matching theoretical predictions and simulations. Furthermore, we provide a robust and comprehensive guideline for advancing efficient inductive links for various BWPT applications, with shared resources in GitHub available for utilization by the broader community.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"19 2","pages":"300-316"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10848301/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of implantable bioelectronics, this work provides new insights into maximizing biomedical wireless power transfer (BWPT) via the systematic development of inductive links. This approach addresses the specific challenges of power transfer efficiency (PTE) optimization within the spatial/area constraints of bio-implants embedded in tissue. Key contributions include the derivation of an optimal self-inductance with S-parameter-based analyses leading to the co-design of planar spiral coils and L-section impedance matching networks. To validate the proposed design methodology, two coil prototypes— one symmetric (type-1) and one asymmetric (type-2)— were fabricated and tested for PTE in pork tissue. Targeting a 20 MHz design frequency, the type-1 coil demonstrated a state-of-the-art PTE of $\sim$ 4% (channel length = 15 mm) with a return loss (RL) $>$ 20 dB on both the input and output sides, within an area constraint of $<$ 18$\times$18 mm${}^{2}$. In contrast, the type-2 coil achieved a PTE of $\sim$ 2% with an RL $>$ 15 dB, for a smaller receiving coil area of $<$ 5$\times$5 mm${}^{2}$ for the same tissue environment. To complement the coils, we demonstrate a 65 nm test chip with an integrated energy harvester, which includes a 30-stage rectifier and low-dropout regulator (LDO), producing a stable $\sim$ 1V DC output within tissue medium, matching theoretical predictions and simulations. Furthermore, we provide a robust and comprehensive guideline for advancing efficient inductive links for various BWPT applications, with shared resources in GitHub available for utilization by the broader community.
高效感应链路设计:区域受限植入物中最佳生物医学无线能量传输的系统方法。
在植入式生物电子学的背景下,这项工作为通过系统发展感应链路最大化生物医学无线电力传输(BWPT)提供了新的见解。该方法解决了在组织内嵌入生物植入物的空间/区域限制下能量传输效率(PTE)优化的具体挑战。主要贡献包括利用基于s参数的分析推导出最佳自感,从而实现平面螺旋线圈和l截面阻抗匹配网络的协同设计。为了验证所提出的设计方法,制作了两个线圈原型-一个对称(1型)和一个不对称(2型)-并对猪肉组织中的PTE进行了测试。针对20 MHz的设计频率,1型线圈显示了最先进的PTE约为4%(通道长度= 15 mm),在< 18×18 mm2的面积约束下,输入和输出侧的回波损耗(RL)为> 20 dB。相比之下,2型线圈的PTE为~ 2%,RL bb0为15 dB,在相同的组织环境下,接收线圈面积< 5×5 mm2。为了补充线圈,我们展示了一个带有集成能量收集器的65 nm测试芯片,其中包括一个30级整流器和低降调节器(LDO),在组织介质中产生稳定的~ 1V直流输出,符合理论预测和模拟。此外,我们还提供了一个强大而全面的指南,用于推进各种BWPT应用程序的有效诱导链接,GitHub中的共享资源可供更广泛的社区使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信