A Six-Transistor Integrate-and-Fire Neuron Enabling Chaotic Dynamics.

Swagat Bhattacharyya, Jennifer O Hasler
{"title":"A Six-Transistor Integrate-and-Fire Neuron Enabling Chaotic Dynamics.","authors":"Swagat Bhattacharyya, Jennifer O Hasler","doi":"10.1109/TBCAS.2025.3526762","DOIUrl":null,"url":null,"abstract":"<p><p>Integrate-and-fire (I&F) neurons used in neuromorphic systems are traditionally optimized for low energy-per-spike and high density, often excluding the complex dynamics of biological neurons. Limited dynamics cause missed opportunities in applications such as modeling time-varying physical systems, where using a small number of neurons with rich nonlinearities can enhance network performance, even when rich neurons incur a marginally higher cost. By adding additional coupling into the gate of one transistor within an I&F neuron, we parsimoniously achieve a highly nonlinear system capable of exhibiting rich dynamics and chaos. The dynamics of this novel neuron include regular spiking, fast spiking, and chaotic chattering, and can be tuned via the neuron parameters and input current. We implement and experimentally demonstrate the behavior of our chaotic neuron and its subcircuits on a 350 nm field-programmable analog array. Experimental insights inform a compact simulation model, which validates experimental results and confirms that the additional coupling incites chaos. Results are corroborated with comparisons to traditional I&F neurons. Our chaotic circuit achieves the lowest area (0.0025 mm<sup>2</sup>), power draw (1.1-2.6 μW), and transistor count (6T) of any nondriven chaotic system in integrated CMOS thus far. We also demonstrate the utility of our neuron for neuroscience exploration and hardware security.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2025.3526762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Integrate-and-fire (I&F) neurons used in neuromorphic systems are traditionally optimized for low energy-per-spike and high density, often excluding the complex dynamics of biological neurons. Limited dynamics cause missed opportunities in applications such as modeling time-varying physical systems, where using a small number of neurons with rich nonlinearities can enhance network performance, even when rich neurons incur a marginally higher cost. By adding additional coupling into the gate of one transistor within an I&F neuron, we parsimoniously achieve a highly nonlinear system capable of exhibiting rich dynamics and chaos. The dynamics of this novel neuron include regular spiking, fast spiking, and chaotic chattering, and can be tuned via the neuron parameters and input current. We implement and experimentally demonstrate the behavior of our chaotic neuron and its subcircuits on a 350 nm field-programmable analog array. Experimental insights inform a compact simulation model, which validates experimental results and confirms that the additional coupling incites chaos. Results are corroborated with comparisons to traditional I&F neurons. Our chaotic circuit achieves the lowest area (0.0025 mm2), power draw (1.1-2.6 μW), and transistor count (6T) of any nondriven chaotic system in integrated CMOS thus far. We also demonstrate the utility of our neuron for neuroscience exploration and hardware security.

一种能实现混沌动力学的六晶体管集成与放电神经元。
传统上,用于神经形态系统的整合-激发(I&F)神经元被优化为低能量-峰值和高密度,通常排除了生物神经元的复杂动力学。有限的动态导致在建模时变物理系统等应用中错失机会,在这些应用中,使用少量具有丰富非线性的神经元可以提高网络性能,即使丰富的神经元会产生略高的成本。通过在I&F神经元内的一个晶体管的栅极中增加额外的耦合,我们简单地实现了一个能够表现出丰富动态和混沌的高度非线性系统。该神经元的动态特性包括规则尖峰、快速尖峰和混沌抖振,并可通过神经元参数和输入电流进行调谐。我们在350 nm的现场可编程模拟阵列上实现并实验证明了混沌神经元及其子电路的行为。实验结果为紧凑的仿真模型提供了信息,该模型验证了实验结果,并确认了额外的耦合激发了混沌。结果与传统I&F神经元的比较得到了证实。我们的混沌电路实现了迄今为止集成CMOS非驱动混沌系统中最小的面积(0.0025 mm2),功耗(1.1-2.6 μW)和晶体管数(6T)。我们还展示了我们的神经元在神经科学探索和硬件安全方面的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信