A Six-Transistor Integrate-and-Fire Neuron Enabling Chaotic Dynamics.

Swagat Bhattacharyya, Jennifer O Hasler
{"title":"A Six-Transistor Integrate-and-Fire Neuron Enabling Chaotic Dynamics.","authors":"Swagat Bhattacharyya, Jennifer O Hasler","doi":"10.1109/TBCAS.2025.3526762","DOIUrl":null,"url":null,"abstract":"<p><p>Integrate-and-fire (I&F) neurons used in neuromorphic systems are traditionally optimized for low energy-per-spike and high density, often excluding the complex dynamics of biological neurons. Limited dynamics cause missed opportunities in applications such as modeling time-varying physical systems, where using a small number of neurons with rich nonlinearities can enhance network performance, even when rich neurons incur a marginally higher cost. By adding additional coupling into the gate of one transistor within an I&F neuron, we parsimoniously achieve a highly nonlinear system capable of exhibiting rich dynamics and chaos. The dynamics of this novel neuron include regular spiking, fast spiking, and chaotic chattering, and can be tuned via the neuron parameters and input current. We implement and experimentally demonstrate the behavior of our chaotic neuron and its subcircuits on a 350 nm field-programmable analog array. Experimental insights inform a compact simulation model, which validates experimental results and confirms that the additional coupling incites chaos. Results are corroborated with comparisons to traditional I&F neurons. Our chaotic circuit achieves the lowest area (0.0025 mm<sup>2</sup>), power draw (1.1-2.6 μW), and transistor count (6T) of any nondriven chaotic system in integrated CMOS thus far. We also demonstrate the utility of our neuron for neuroscience exploration and hardware security.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2025.3526762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Integrate-and-fire (I&F) neurons used in neuromorphic systems are traditionally optimized for low energy-per-spike and high density, often excluding the complex dynamics of biological neurons. Limited dynamics cause missed opportunities in applications such as modeling time-varying physical systems, where using a small number of neurons with rich nonlinearities can enhance network performance, even when rich neurons incur a marginally higher cost. By adding additional coupling into the gate of one transistor within an I&F neuron, we parsimoniously achieve a highly nonlinear system capable of exhibiting rich dynamics and chaos. The dynamics of this novel neuron include regular spiking, fast spiking, and chaotic chattering, and can be tuned via the neuron parameters and input current. We implement and experimentally demonstrate the behavior of our chaotic neuron and its subcircuits on a 350 nm field-programmable analog array. Experimental insights inform a compact simulation model, which validates experimental results and confirms that the additional coupling incites chaos. Results are corroborated with comparisons to traditional I&F neurons. Our chaotic circuit achieves the lowest area (0.0025 mm2), power draw (1.1-2.6 μW), and transistor count (6T) of any nondriven chaotic system in integrated CMOS thus far. We also demonstrate the utility of our neuron for neuroscience exploration and hardware security.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信