A Programmable CMOS DEP Chip for Cell Manipulation.

Wen-Yue Lin, Lin-Hung Lai, Yi-Wei Lin, Chen-Yi Lee
{"title":"A Programmable CMOS DEP Chip for Cell Manipulation.","authors":"Wen-Yue Lin, Lin-Hung Lai, Yi-Wei Lin, Chen-Yi Lee","doi":"10.1109/TBCAS.2024.3514874","DOIUrl":null,"url":null,"abstract":"<p><p>This work presents a programmable CMOS DEP chip that allows real-time control over the spatial distribution of DEP force, enabling controlled cell movement on the chip surface, from single-cell manipulation to multi-cell patterning. Implemented on a standard 0.18 μm CMOS process without post-processing, the chip features a 128 × 128 array of individually controllable 10 μm microelectrodes with 0.28 μm spacing. Utilizing Metal 5 electrodes in a 1P6M process, the chip achieves particle manipulation speeds up to 27 μm/s while operating at only 1.8 V, preserving cell viability as confirmed through post- DEP assessments. The implementation of time-sharing patterns enhances manipulation precision by creating distinct boundaries between phases. Experiments demonstrate the chip's capabilities in particle patterning, concentration control, and single-particle manipulation, all performed sequentially on the same chip. Additionally, stem cell aggregation control demonstration offers possibilities for future differentiation studies. With its reconfigurability, this DEP chip offers promising solutions to technical challenges in cell preparation, drug screening, and other biological applications.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2024.3514874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a programmable CMOS DEP chip that allows real-time control over the spatial distribution of DEP force, enabling controlled cell movement on the chip surface, from single-cell manipulation to multi-cell patterning. Implemented on a standard 0.18 μm CMOS process without post-processing, the chip features a 128 × 128 array of individually controllable 10 μm microelectrodes with 0.28 μm spacing. Utilizing Metal 5 electrodes in a 1P6M process, the chip achieves particle manipulation speeds up to 27 μm/s while operating at only 1.8 V, preserving cell viability as confirmed through post- DEP assessments. The implementation of time-sharing patterns enhances manipulation precision by creating distinct boundaries between phases. Experiments demonstrate the chip's capabilities in particle patterning, concentration control, and single-particle manipulation, all performed sequentially on the same chip. Additionally, stem cell aggregation control demonstration offers possibilities for future differentiation studies. With its reconfigurability, this DEP chip offers promising solutions to technical challenges in cell preparation, drug screening, and other biological applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信