A Portable Chip-Based Overhauser DNP Platform for Biomedical Liquid Sample Analysis

Qing Yang;Hadi Lotfi;Frederik Dreyer;Michal Kern;Bernhard Blümich;Jens Anders
{"title":"A Portable Chip-Based Overhauser DNP Platform for Biomedical Liquid Sample Analysis","authors":"Qing Yang;Hadi Lotfi;Frederik Dreyer;Michal Kern;Bernhard Blümich;Jens Anders","doi":"10.1109/TBCAS.2024.3521033","DOIUrl":null,"url":null,"abstract":"Low-field nuclear magnetic resonance (NMR) instruments are an indispensable tool in industrial research and quality control. However, the intrinsically low spin polarization at low magnetic fields severely limits their detection sensitivity and measurement throughput, preventing their widespread use in biomedical analysis. Overhauser dynamic nuclear polarization (ODNP) effectively addresses this problem by transferring the spin polarization from free electrons to protons, significantly enhancing sensitivity. In this paper, we explore the potential of using ODNP for signal enhancement in a custom-designed portable chip-based DNP-enhanced NMR platform, which is centered around a miniaturized microwave (MW) transmitter, a custom-designed NMR-on-a-chip transceiver, and two application-specific ODNP probes. The MW transmitter provides frequency synthesis, signal modulation, and power amplification, providing sufficient output power for efficient polarization transfer. The NMR-on-a-chip transceiver combines a radio frequency (RF) transmitter with a fully differential quadrature receiver, providing pulsed excitation and NMR signal down-conversion and amplification. Two custom-designed ODNP probes are used for proof-of-concept DNP-enhanced NMR relaxometry and spectroscopy measurements. The presented chip-based ODNP platform achieves a maximum MW output power of <inline-formula><tex-math>$34 \\textrm{dBm}$</tex-math></inline-formula>, resulting in a signal enhancement of <inline-formula><tex-math>$-162$</tex-math></inline-formula> using the relaxometry ODNP probe with <inline-formula><tex-math>$1.4 \\mu\\textrm{L}$</tex-math></inline-formula> of <inline-formula><tex-math>$10 \\textrm{mM}$</tex-math></inline-formula> non-degassed TEMPOL solution, and an enhancement of <inline-formula><tex-math>$-63$</tex-math></inline-formula> with the spectroscopy ODNP probe using <inline-formula><tex-math>$50 \\textrm{nL}$</tex-math></inline-formula> of the same solution. The proton polarization was increased from <inline-formula><tex-math>$0.5\\times 10^{-6}$</tex-math></inline-formula> to <inline-formula><tex-math>$81\\times 10^{-6}$</tex-math></inline-formula> at a low field of <inline-formula><tex-math>$0.16 \\textrm{T}$</tex-math></inline-formula>. Proof-of-concept measurements on radical-doped tattoo inks and acetic acid verify the potential of our chip-based ODNP platform for the analysis of biologically and medically relevant parameters such as relaxation times, chemical shifts, and hyperfine interactions.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"19 2","pages":"257-269"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10811975/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Low-field nuclear magnetic resonance (NMR) instruments are an indispensable tool in industrial research and quality control. However, the intrinsically low spin polarization at low magnetic fields severely limits their detection sensitivity and measurement throughput, preventing their widespread use in biomedical analysis. Overhauser dynamic nuclear polarization (ODNP) effectively addresses this problem by transferring the spin polarization from free electrons to protons, significantly enhancing sensitivity. In this paper, we explore the potential of using ODNP for signal enhancement in a custom-designed portable chip-based DNP-enhanced NMR platform, which is centered around a miniaturized microwave (MW) transmitter, a custom-designed NMR-on-a-chip transceiver, and two application-specific ODNP probes. The MW transmitter provides frequency synthesis, signal modulation, and power amplification, providing sufficient output power for efficient polarization transfer. The NMR-on-a-chip transceiver combines a radio frequency (RF) transmitter with a fully differential quadrature receiver, providing pulsed excitation and NMR signal down-conversion and amplification. Two custom-designed ODNP probes are used for proof-of-concept DNP-enhanced NMR relaxometry and spectroscopy measurements. The presented chip-based ODNP platform achieves a maximum MW output power of $34 \textrm{dBm}$, resulting in a signal enhancement of $-162$ using the relaxometry ODNP probe with $1.4 \mu\textrm{L}$ of $10 \textrm{mM}$ non-degassed TEMPOL solution, and an enhancement of $-63$ with the spectroscopy ODNP probe using $50 \textrm{nL}$ of the same solution. The proton polarization was increased from $0.5\times 10^{-6}$ to $81\times 10^{-6}$ at a low field of $0.16 \textrm{T}$. Proof-of-concept measurements on radical-doped tattoo inks and acetic acid verify the potential of our chip-based ODNP platform for the analysis of biologically and medically relevant parameters such as relaxation times, chemical shifts, and hyperfine interactions.
用于生物医学液体样品分析的便携式芯片Overhauser DNP平台。
低场核磁共振(NMR)仪器是工业研究和质量控制中不可缺少的工具。然而,在低磁场下固有的低自旋极化严重限制了它们的检测灵敏度和测量吞吐量,阻碍了它们在生物医学分析中的广泛应用。Overhauser动态核极化(ODNP)通过将自旋极化从自由电子转移到质子,有效地解决了这一问题,显著提高了灵敏度。在本文中,我们探索了在定制设计的便携式基于dnp增强核磁共振芯片平台中使用ODNP进行信号增强的潜力,该平台以小型化微波(MW)发射器,定制设计的核磁共振片上收发器和两个特定应用的ODNP探针为中心。MW发射机提供频率合成、信号调制和功率放大,为有效的极化传输提供足够的输出功率。片上核磁共振收发器结合了射频(RF)发射器和全微分正交接收器,提供脉冲激励和核磁共振信号的下变频和放大。两个定制设计的ODNP探针用于概念验证dnpenhenhanced NMR弛豫测量和光谱测量。所提出的基于芯片的ODNP平台实现了34dBm的最大MW输出功率,使用1.4 μL的10mM未脱气TEMPOL溶液使用弛缓ODNP探针信号增强-162,使用50 μL的相同溶液使用光谱ODNP探针信号增强-63。在0.16T的低场下,质子极化从0.5×10-6增加到81×10-6。对自由基掺杂纹身油墨和乙酸的概念验证测量验证了我们基于芯片的ODNP平台在分析生物学和医学相关参数(如松弛时间、化学位移和超精细相互作用)方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信