Anthrone/XLPE: an adaptive charge capture intelligent insulation material for advanced electric power transmission.

Ke Li, Lu-Ming Zhou, Xiao-Qian Zhu, Zheng Bai, Gui-Min Jiang, Yuan-Xiang Zhou, Yun-Xiao Zhang
{"title":"Anthrone/XLPE: an adaptive charge capture intelligent insulation material for advanced electric power transmission.","authors":"Ke Li, Lu-Ming Zhou, Xiao-Qian Zhu, Zheng Bai, Gui-Min Jiang, Yuan-Xiang Zhou, Yun-Xiao Zhang","doi":"10.1038/s44172-025-00361-1","DOIUrl":null,"url":null,"abstract":"<p><p>The degradation of electrical insulation is mainly attributed to local defects. Although incorporating organic small molecules into dielectric polymers promotes the insulation strength, accurate suppression of defect development is a long-term and formidable challenge. Here we utilize the adaptive charge capture methodology to achieve precise defect suppression, leading to a 123% increase in the initiation voltage of electrical trees in anthrone/cross-linked polyethylene, significantly outperforming existing dielectric polymers and polymer composites. A significant observation is the confinement of charge at the interface between the anode and cross-linked polyethylene in anthrone/cross-linked polyethylene, generating a reverse inherent electric field near the interface and reducing the internal electric field strength of cross-linked polyethylene by up to 18%. These findings not only open avenues for further exploration of materials for ultra-high voltage cables but also play a crucial role in the commercialization and practical application of organic semiconductors in insulation dielectrics.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"38"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876605/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00361-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The degradation of electrical insulation is mainly attributed to local defects. Although incorporating organic small molecules into dielectric polymers promotes the insulation strength, accurate suppression of defect development is a long-term and formidable challenge. Here we utilize the adaptive charge capture methodology to achieve precise defect suppression, leading to a 123% increase in the initiation voltage of electrical trees in anthrone/cross-linked polyethylene, significantly outperforming existing dielectric polymers and polymer composites. A significant observation is the confinement of charge at the interface between the anode and cross-linked polyethylene in anthrone/cross-linked polyethylene, generating a reverse inherent electric field near the interface and reducing the internal electric field strength of cross-linked polyethylene by up to 18%. These findings not only open avenues for further exploration of materials for ultra-high voltage cables but also play a crucial role in the commercialization and practical application of organic semiconductors in insulation dielectrics.

Anthrone/XLPE:用于先进电力传输的自适应电荷捕获智能绝缘材料。
电绝缘的退化主要是由局部缺陷引起的。虽然在介电聚合物中加入有机小分子可以提高绝缘强度,但准确抑制缺陷的发展是一项长期而艰巨的挑战。在这里,我们利用自适应电荷捕获方法来实现精确的缺陷抑制,导致蒽酮/交联聚乙烯电树的起始电压增加123%,显著优于现有的介电聚合物和聚合物复合材料。一个重要的观察结果是,在蒽酮/交联聚乙烯中,电荷在阳极和交联聚乙烯之间的界面处受到限制,在界面附近产生反向固有电场,并使交联聚乙烯的内部电场强度降低了18%。这些发现不仅为超高压电缆材料的进一步探索开辟了道路,而且在绝缘介质中有机半导体的商业化和实际应用中发挥了至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信