Spinal Cord Image Denoising Using Dncnn Algorithm.

IF 1.1 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
R Jerlin, Priya Murugasen, N R Shanker
{"title":"Spinal Cord Image Denoising Using Dncnn Algorithm.","authors":"R Jerlin, Priya Murugasen, N R Shanker","doi":"10.2174/0115734056337613241209072322","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Spinal image denoising plays a vital role in the accurate diagnosis of disc herniation (DH).</p><p><strong>Objective: </strong>Traditional denoising algorithms perform less due Limited Directional Selectivity problem and do not adequately capture directional information in pixels. Traditional algorithms' edge representation and texture details are insufficient for the earlier detection of DH. Limited Directional Selectivity leads to inaccurate diagnosis and classification of Disc Herniation (DH) stages. The DH stages are (i) Degeneration (ii) Prolapse (iii) Extrusion and (iv) Sequestration. Moreover, detection of DH size below 2mm using MR image is the major problem.</p><p><strong>Methods: </strong>To solve the above problem, spinal cord MR images fed to the proposed Parrot optimization tuned Denoising Convolutional Neural Network (Po- DnCNN) algorithm for perspective enhancement of nucleus pulposus region in the spinal cord, vertebrae. The perspective enhancement of Spinal cord image led to the accurate classification of stages and earlier detection of DH by using the proposed Hippopotamus optimization- Fast Hybrid Vision Transformer (Ho-FastViT) algorithm. For this study, spinal cord MR images are obtained from the Grand Challenge website - SPIDER dataset.</p><p><strong>Results: </strong>The proposed Po-DnCNN method and Ho-FastViT results are analysed quantitatively and qualitatively based on the edge, contrast, classification of the stage, and enhancement of the projected nucleus pulposus region in the spinal cord and vertebrae. The predicted DH results using the proposed method are compared with the manual Pfirrman Grade value of the spinal card method.</p><p><strong>Conclusion: </strong>Proposed method is better than traditional methods for earlier detection of DH. Po-DnCNN and Ho-FastViat methods give high accuracy of about 98% and 97% compared to traditional methods.</p>","PeriodicalId":54215,"journal":{"name":"Current Medical Imaging Reviews","volume":"21 1","pages":"e15734056337613"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Imaging Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734056337613241209072322","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Spinal image denoising plays a vital role in the accurate diagnosis of disc herniation (DH).

Objective: Traditional denoising algorithms perform less due Limited Directional Selectivity problem and do not adequately capture directional information in pixels. Traditional algorithms' edge representation and texture details are insufficient for the earlier detection of DH. Limited Directional Selectivity leads to inaccurate diagnosis and classification of Disc Herniation (DH) stages. The DH stages are (i) Degeneration (ii) Prolapse (iii) Extrusion and (iv) Sequestration. Moreover, detection of DH size below 2mm using MR image is the major problem.

Methods: To solve the above problem, spinal cord MR images fed to the proposed Parrot optimization tuned Denoising Convolutional Neural Network (Po- DnCNN) algorithm for perspective enhancement of nucleus pulposus region in the spinal cord, vertebrae. The perspective enhancement of Spinal cord image led to the accurate classification of stages and earlier detection of DH by using the proposed Hippopotamus optimization- Fast Hybrid Vision Transformer (Ho-FastViT) algorithm. For this study, spinal cord MR images are obtained from the Grand Challenge website - SPIDER dataset.

Results: The proposed Po-DnCNN method and Ho-FastViT results are analysed quantitatively and qualitatively based on the edge, contrast, classification of the stage, and enhancement of the projected nucleus pulposus region in the spinal cord and vertebrae. The predicted DH results using the proposed method are compared with the manual Pfirrman Grade value of the spinal card method.

Conclusion: Proposed method is better than traditional methods for earlier detection of DH. Po-DnCNN and Ho-FastViat methods give high accuracy of about 98% and 97% compared to traditional methods.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
246
审稿时长
1 months
期刊介绍: Current Medical Imaging Reviews publishes frontier review articles, original research articles, drug clinical trial studies and guest edited thematic issues on all the latest advances on medical imaging dedicated to clinical research. All relevant areas are covered by the journal, including advances in the diagnosis, instrumentation and therapeutic applications related to all modern medical imaging techniques. The journal is essential reading for all clinicians and researchers involved in medical imaging and diagnosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信