Tiankai Xie, Jiaqing Chen, Yaoqing Yang, Caleb Geniesse, Ge Shi, Ajinkya Chaudhari, John Kevin Cava, Michael W Mahoney, Talita Perciano, Gunther H Weber, Ross Maciejewski
{"title":"LossLens: Diagnostics for Machine Learning Through Loss Landscape Visual Analytics.","authors":"Tiankai Xie, Jiaqing Chen, Yaoqing Yang, Caleb Geniesse, Ge Shi, Ajinkya Chaudhari, John Kevin Cava, Michael W Mahoney, Talita Perciano, Gunther H Weber, Ross Maciejewski","doi":"10.1109/MCG.2024.3509374","DOIUrl":null,"url":null,"abstract":"<p><p>Modern machine learning often relies on optimizing a neural network's parameters using a loss function to learn complex features. Beyond training, examining the loss function with respect to a network's parameters (i.e., as a loss landscape) can reveal insights into the architecture and learning process. While the local structure of the loss landscape surrounding an individual solution can be characterized using a variety of approaches, the global structure of a loss landscape, which includes potentially many local minima corresponding to different solutions, remains far more difficult to conceptualize and visualize. To address this difficulty, we introduce LossLens, a visual analytics framework that explores loss landscapes at multiple scales. LossLens integrates metrics from global and local scales into a comprehensive visual representation, enhancing model diagnostics. We demonstrate LossLens through two case studies: visualizing how residual connections influence a ResNet-20, and visualizing how physical parameters influence a physics-informed neural network (PINN) solving a simple convection problem.</p>","PeriodicalId":55026,"journal":{"name":"IEEE Computer Graphics and Applications","volume":"PP ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Graphics and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/MCG.2024.3509374","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Modern machine learning often relies on optimizing a neural network's parameters using a loss function to learn complex features. Beyond training, examining the loss function with respect to a network's parameters (i.e., as a loss landscape) can reveal insights into the architecture and learning process. While the local structure of the loss landscape surrounding an individual solution can be characterized using a variety of approaches, the global structure of a loss landscape, which includes potentially many local minima corresponding to different solutions, remains far more difficult to conceptualize and visualize. To address this difficulty, we introduce LossLens, a visual analytics framework that explores loss landscapes at multiple scales. LossLens integrates metrics from global and local scales into a comprehensive visual representation, enhancing model diagnostics. We demonstrate LossLens through two case studies: visualizing how residual connections influence a ResNet-20, and visualizing how physical parameters influence a physics-informed neural network (PINN) solving a simple convection problem.
期刊介绍:
IEEE Computer Graphics and Applications (CG&A) bridges the theory and practice of computer graphics, visualization, virtual and augmented reality, and HCI. From specific algorithms to full system implementations, CG&A offers a unique combination of peer-reviewed feature articles and informal departments. Theme issues guest edited by leading researchers in their fields track the latest developments and trends in computer-generated graphical content, while tutorials and surveys provide a broad overview of interesting and timely topics. Regular departments further explore the core areas of graphics as well as extend into topics such as usability, education, history, and opinion. Each issue, the story of our cover focuses on creative applications of the technology by an artist or designer. Published six times a year, CG&A is indispensable reading for people working at the leading edge of computer-generated graphics technology and its applications in everything from business to the arts.