Shuqing Si, Xiaojun Zhang, Yang Yu, Xiaoyun Zhong, Xiaoxi Zhang, Jianbo Yuan, Ka Hou Chu, Fuhua Li
{"title":"Molecular mechanisms of Mmd2 gene in regulating growth of the Pacific white shrimp <i>Litopenaeus vannamei</i>.","authors":"Shuqing Si, Xiaojun Zhang, Yang Yu, Xiaoyun Zhong, Xiaoxi Zhang, Jianbo Yuan, Ka Hou Chu, Fuhua Li","doi":"10.1007/s42995-024-00273-7","DOIUrl":null,"url":null,"abstract":"<p><p>Growth of the Pacific white shrimp <i>Litopenaeus vannamei</i>, the most important farmed crustacean, has consistently been a focal point for breeders. Over the past decades, some candidate genes for shrimp growth have been identified. However, further research is needed to elucidate the molecular regulatory mechanism of these genes. <i>LvMmd2</i> was previously identified as a candidate gene that may inhibit the growth of <i>L. vannamei</i>. In this study, we analyzed the genotype and expression of the <i>LvMmd2</i> gene in a breeding family and indicated its role as a growth-inhibiting gene. We found that LvMmd2 co-localized with its homolog LvPAQR3 at the Golgi apparatus. Using co-immunoprecipitation (Co-IP) and DUAL membrane system yeast two-hybrid (MbY2H), we indicated the interactions between LvMmd2 and LvPAQR3, LvPAQR3 and LvRaf1, as well as LvMmd2 and LvRho. These results suggest that <i>LvMmd2</i> directly and indirectly regulates the Ras signaling pathway. Furthermore, we show that the <i>LvMmd2</i> gene may indirectly affect the PI3K/AKT, insulin, and Hippo signaling pathways to regulate cell proliferation and differentiation via LvPAQR3 and LvRaf1. Through transcriptome and MbY2H analyses, we have also revealed the interaction between LvMmd2 and proteins involved in growth, immunity, protein transport, synthesis, and modification. These findings demonstrate the various molecular pathways through which <i>LvMmd2</i> regulates <i>L. vannamei</i> growth. This study provides insights into the mechanism of shrimp growth regulated by <i>Mmd2</i>, enhances our understanding of <i>LvMmd2</i> function, and highlights its potential application in shrimp breeding.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-024-00273-7.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"7 1","pages":"50-65"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871217/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Life Science & Technology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42995-024-00273-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Growth of the Pacific white shrimp Litopenaeus vannamei, the most important farmed crustacean, has consistently been a focal point for breeders. Over the past decades, some candidate genes for shrimp growth have been identified. However, further research is needed to elucidate the molecular regulatory mechanism of these genes. LvMmd2 was previously identified as a candidate gene that may inhibit the growth of L. vannamei. In this study, we analyzed the genotype and expression of the LvMmd2 gene in a breeding family and indicated its role as a growth-inhibiting gene. We found that LvMmd2 co-localized with its homolog LvPAQR3 at the Golgi apparatus. Using co-immunoprecipitation (Co-IP) and DUAL membrane system yeast two-hybrid (MbY2H), we indicated the interactions between LvMmd2 and LvPAQR3, LvPAQR3 and LvRaf1, as well as LvMmd2 and LvRho. These results suggest that LvMmd2 directly and indirectly regulates the Ras signaling pathway. Furthermore, we show that the LvMmd2 gene may indirectly affect the PI3K/AKT, insulin, and Hippo signaling pathways to regulate cell proliferation and differentiation via LvPAQR3 and LvRaf1. Through transcriptome and MbY2H analyses, we have also revealed the interaction between LvMmd2 and proteins involved in growth, immunity, protein transport, synthesis, and modification. These findings demonstrate the various molecular pathways through which LvMmd2 regulates L. vannamei growth. This study provides insights into the mechanism of shrimp growth regulated by Mmd2, enhances our understanding of LvMmd2 function, and highlights its potential application in shrimp breeding.
Supplementary information: The online version contains supplementary material available at 10.1007/s42995-024-00273-7.
期刊介绍:
Marine Life Science & Technology (MLST), established in 2019, is dedicated to publishing original research papers that unveil new discoveries and theories spanning a wide spectrum of life sciences and technologies. This includes fundamental biology, fisheries science and technology, medicinal bioresources, food science, biotechnology, ecology, and environmental biology, with a particular focus on marine habitats.
The journal is committed to nurturing synergistic interactions among these diverse disciplines, striving to advance multidisciplinary approaches within the scientific field. It caters to a readership comprising biological scientists, aquaculture researchers, marine technologists, biological oceanographers, and ecologists.