Jing Zhu, Qing Chen, Zhenru Guo, Yan Wang, Qingcheng Li, Yang Li, Lu Lei, Caihong Liu, Yue Li, Rui Tang, Jie Tang, Ziyi Zhang, Shijing Peng, Mi Zhang, Zhongxu Chen, Li Kong, Mei Deng, Qiang Xu, Yazhou Zhang, Qiantao Jiang, Jirui Wang, Guoyue Chen, Yunfeng Jiang, Yuming Wei, Youliang Zheng, Pengfei Qi
{"title":"Genome-wide analysis of Q binding reveals a regulatory network that coordinates wheat grain yield and grain protein content.","authors":"Jing Zhu, Qing Chen, Zhenru Guo, Yan Wang, Qingcheng Li, Yang Li, Lu Lei, Caihong Liu, Yue Li, Rui Tang, Jie Tang, Ziyi Zhang, Shijing Peng, Mi Zhang, Zhongxu Chen, Li Kong, Mei Deng, Qiang Xu, Yazhou Zhang, Qiantao Jiang, Jirui Wang, Guoyue Chen, Yunfeng Jiang, Yuming Wei, Youliang Zheng, Pengfei Qi","doi":"10.1016/j.jgg.2025.02.011","DOIUrl":null,"url":null,"abstract":"<p><p>Wheat is an important cereal crop used to produce diverse and popular food worldwide because of its high grain yield (GY) and grain protein content (GPC). However, GY and GPC are usually negatively correlated. We previously reported that favorable alleles of the wheat domestication gene Q can synchronously increase GY and GPC, but the underlying mechanisms remain largely unknown. In this study, we investigated the regulatory network involving Q associated with GY and GPC in young grains through DNA affinity purification sequencing and transcriptome sequencing analyses, electrophoretic mobility shift and dual-luciferase assays, and transgenic approaches. Three Q-binding motifs, namely TTAAGG, AAACA[A/T]A, and GTAC[T/G]A, were identified. Notably, genes related to photosynthesis or carbon and nitrogen metabolism were enriched and regulated by Q. Moreover, Q was revealed to bind directly to its own gene and the glutamine synthetase gene TaGSr-4D to increase expression, thereby influencing nitrogen assimilation during the grain filling stage and increasing GPC. Considered together, our study findings provide molecular evidence of the positive regulatory effects of Q on wheat GY and GPC.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jgg.2025.02.011","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Wheat is an important cereal crop used to produce diverse and popular food worldwide because of its high grain yield (GY) and grain protein content (GPC). However, GY and GPC are usually negatively correlated. We previously reported that favorable alleles of the wheat domestication gene Q can synchronously increase GY and GPC, but the underlying mechanisms remain largely unknown. In this study, we investigated the regulatory network involving Q associated with GY and GPC in young grains through DNA affinity purification sequencing and transcriptome sequencing analyses, electrophoretic mobility shift and dual-luciferase assays, and transgenic approaches. Three Q-binding motifs, namely TTAAGG, AAACA[A/T]A, and GTAC[T/G]A, were identified. Notably, genes related to photosynthesis or carbon and nitrogen metabolism were enriched and regulated by Q. Moreover, Q was revealed to bind directly to its own gene and the glutamine synthetase gene TaGSr-4D to increase expression, thereby influencing nitrogen assimilation during the grain filling stage and increasing GPC. Considered together, our study findings provide molecular evidence of the positive regulatory effects of Q on wheat GY and GPC.
期刊介绍:
The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.