Laura Cervera, Marta Arizcun, Luis Mercado, Alberto Cuesta, Elena Chaves-Pozo
{"title":"Hepcidin peptide controls the inflammatory response induced by betanodavirus infection and improves European sea bass (<i>Dicentrachus labrax</i>) survival.","authors":"Laura Cervera, Marta Arizcun, Luis Mercado, Alberto Cuesta, Elena Chaves-Pozo","doi":"10.1007/s42995-024-00262-w","DOIUrl":null,"url":null,"abstract":"<p><p>Nervous necrosis virus (NNV) is the etiological agent of viral encephalopathy and retinopathy in many fish species, including European sea bass (<i>Dicentrachus labrax</i>) and is of great economic losses to fish farmers. To solve this problem in fish production, antimicrobial peptides (AMPs) have been identified as potential candidates for NNV treatment in aquaculture. Hepcidin (Hamp) is one of the most promising AMPs. Thus, we aimed to evaluate the therapeutic application of Hamp synthetic peptide after NNV challenge. Hamp was able to significantly increase survival rates and ameliorate clinical signs of the disease, though the viral levels, determined by viral replication and immunolocalization, were not affected. Synthetic Hamp increased the immunoglobulin M (IgM) and AMP protein levels in serum and some tissues respect to the levels found in NNV-infected fish. However, Hamp peptide decreased the NNV-induced bactericidal activity. At the gene level, Hamp exerted anti-inflammatory properties, reducing the pro-inflammatory response orchestrated by NNV, probably preventing neuronal damage. Apart from this, Hamp up-regulated the expression of adhesion molecules that facilitated the recruitment of immune cells, namely T helper and B cells, probably to orchestrate the adaptive response. To conclude, Hamp immunomodulatory properties and therapeutic application against NNV are very promising for its use in aquaculture.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-024-00262-w.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"7 1","pages":"110-119"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871212/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Life Science & Technology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42995-024-00262-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nervous necrosis virus (NNV) is the etiological agent of viral encephalopathy and retinopathy in many fish species, including European sea bass (Dicentrachus labrax) and is of great economic losses to fish farmers. To solve this problem in fish production, antimicrobial peptides (AMPs) have been identified as potential candidates for NNV treatment in aquaculture. Hepcidin (Hamp) is one of the most promising AMPs. Thus, we aimed to evaluate the therapeutic application of Hamp synthetic peptide after NNV challenge. Hamp was able to significantly increase survival rates and ameliorate clinical signs of the disease, though the viral levels, determined by viral replication and immunolocalization, were not affected. Synthetic Hamp increased the immunoglobulin M (IgM) and AMP protein levels in serum and some tissues respect to the levels found in NNV-infected fish. However, Hamp peptide decreased the NNV-induced bactericidal activity. At the gene level, Hamp exerted anti-inflammatory properties, reducing the pro-inflammatory response orchestrated by NNV, probably preventing neuronal damage. Apart from this, Hamp up-regulated the expression of adhesion molecules that facilitated the recruitment of immune cells, namely T helper and B cells, probably to orchestrate the adaptive response. To conclude, Hamp immunomodulatory properties and therapeutic application against NNV are very promising for its use in aquaculture.
Supplementary information: The online version contains supplementary material available at 10.1007/s42995-024-00262-w.
期刊介绍:
Marine Life Science & Technology (MLST), established in 2019, is dedicated to publishing original research papers that unveil new discoveries and theories spanning a wide spectrum of life sciences and technologies. This includes fundamental biology, fisheries science and technology, medicinal bioresources, food science, biotechnology, ecology, and environmental biology, with a particular focus on marine habitats.
The journal is committed to nurturing synergistic interactions among these diverse disciplines, striving to advance multidisciplinary approaches within the scientific field. It caters to a readership comprising biological scientists, aquaculture researchers, marine technologists, biological oceanographers, and ecologists.