Noncanonical circRNA biogenesis driven by alpha and gamma herpesviruses.

IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sarah E Dremel, Vishal N Koparde, Jesse H Arbuckle, Chad H Hogan, Thomas M Kristie, Laurie T Krug, Nicholas K Conrad, Joseph M Ziegelbauer
{"title":"Noncanonical circRNA biogenesis driven by alpha and gamma herpesviruses.","authors":"Sarah E Dremel, Vishal N Koparde, Jesse H Arbuckle, Chad H Hogan, Thomas M Kristie, Laurie T Krug, Nicholas K Conrad, Joseph M Ziegelbauer","doi":"10.1038/s44318-025-00398-0","DOIUrl":null,"url":null,"abstract":"<p><p>Herpesviruses require the host transcriptional machinery, inducing significant changes in gene expression to prioritize viral transcripts. We examined alpha- and gamma-herpesvirus alterations to a type of alternative splicing, namely circular RNA (circRNA) synthesis. We developed \"Circrnas in Host And viRuses anaLysis pIpEline\" (CHARLIE) to facilitate viral profiling. This method identified thousands of back-splicing variants, including circRNA common to lytic and latent phases of infection. Ours is the first report of Herpes Simplex Virus-1 circRNAs, including species derived from ICP0 and the latency-associated transcript. We characterized back-splicing cis- and trans-elements, and found viral circRNAs resistant to spliceosome perturbation and lacking canonical splice donor-acceptors. Subsequent loss-of-function studies of host RNA ligases (RTCB, RLIG1) revealed instances of decreased viral back splicing. Using eCLIP and 4sU-Sequencing, we determined that the KSHV RNA-binding protein, ORF57, enhanced synthesis for a subset of viral and host circRNAs. Our work explores unique splicing mechanisms driven by lytic infection, and identifies a class of transcripts with the potential to function in replication, persistence, or tumorigenesis.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-025-00398-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Herpesviruses require the host transcriptional machinery, inducing significant changes in gene expression to prioritize viral transcripts. We examined alpha- and gamma-herpesvirus alterations to a type of alternative splicing, namely circular RNA (circRNA) synthesis. We developed "Circrnas in Host And viRuses anaLysis pIpEline" (CHARLIE) to facilitate viral profiling. This method identified thousands of back-splicing variants, including circRNA common to lytic and latent phases of infection. Ours is the first report of Herpes Simplex Virus-1 circRNAs, including species derived from ICP0 and the latency-associated transcript. We characterized back-splicing cis- and trans-elements, and found viral circRNAs resistant to spliceosome perturbation and lacking canonical splice donor-acceptors. Subsequent loss-of-function studies of host RNA ligases (RTCB, RLIG1) revealed instances of decreased viral back splicing. Using eCLIP and 4sU-Sequencing, we determined that the KSHV RNA-binding protein, ORF57, enhanced synthesis for a subset of viral and host circRNAs. Our work explores unique splicing mechanisms driven by lytic infection, and identifies a class of transcripts with the potential to function in replication, persistence, or tumorigenesis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
EMBO Journal
EMBO Journal 生物-生化与分子生物学
CiteScore
18.90
自引率
0.90%
发文量
246
审稿时长
1.5 months
期刊介绍: The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance. With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信