{"title":"A 402 MHz and 1.73-VCE Resonance Regulating Rectifier with On-Chip Antennas for Bioimplants.","authors":"Guoao Liu, Yuanqi Hu","doi":"10.1109/TBCAS.2024.3523913","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a wireless power transfer (WPT) system composed of a voltage-mode fully integrated resonance regulating rectifier (IR<sup>3</sup>) and an on-chip antenna running at 402 MHz has been designed for bioimplants in deep tissue. The proposed IR<sup>3</sup>, including a 200 pF decoupling capacitor, is implemented in a 0.22 mm<sup>2</sup> active area in the 180-nm CMOS process. A charging duration based regulation compensation circuit offers a low ripple factor of 0.3% at a 1.8 V output voltage and a high voltage conversion efficiency (VCE) of 1.73 to overcome the low inductive coupling coefficient (under 0.01) due to the deep implant scenario. And a clock gating VCDL-based on-&-off delay compensation scheme is proposed to compensate for the phase error of the IR<sup>3</sup>. Performing rectification and regulation simultaneously in a single stage, the IR<sup>3</sup> effectively enhances power conversion efficiency. The whole system achieves a power conversion efficiency (PCE) of 65% with a 1.5 mW load. In addition, digital control-based compensation circuits also improve its transient response performance, the 1% setting time is only 6.9 μs when the load changes from 65 μW to 1.5 mW.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2024.3523913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a wireless power transfer (WPT) system composed of a voltage-mode fully integrated resonance regulating rectifier (IR3) and an on-chip antenna running at 402 MHz has been designed for bioimplants in deep tissue. The proposed IR3, including a 200 pF decoupling capacitor, is implemented in a 0.22 mm2 active area in the 180-nm CMOS process. A charging duration based regulation compensation circuit offers a low ripple factor of 0.3% at a 1.8 V output voltage and a high voltage conversion efficiency (VCE) of 1.73 to overcome the low inductive coupling coefficient (under 0.01) due to the deep implant scenario. And a clock gating VCDL-based on-&-off delay compensation scheme is proposed to compensate for the phase error of the IR3. Performing rectification and regulation simultaneously in a single stage, the IR3 effectively enhances power conversion efficiency. The whole system achieves a power conversion efficiency (PCE) of 65% with a 1.5 mW load. In addition, digital control-based compensation circuits also improve its transient response performance, the 1% setting time is only 6.9 μs when the load changes from 65 μW to 1.5 mW.