Neurobiological Mechanisms of Ketamine Use, its Addiction, and Withdrawal: A Mini Review.

IF 1.3 Q4 PHARMACOLOGY & PHARMACY
Sin Hui Ng, Yu Zhao Lee, Ming Ye Hong, Audrey Siew Foong Kow, Annette d'Arqom, Chau Ling Tham, Yu-Cheng Ho, MIng Tatt Lee
{"title":"Neurobiological Mechanisms of Ketamine Use, its Addiction, and Withdrawal: A Mini Review.","authors":"Sin Hui Ng, Yu Zhao Lee, Ming Ye Hong, Audrey Siew Foong Kow, Annette d'Arqom, Chau Ling Tham, Yu-Cheng Ho, MIng Tatt Lee","doi":"10.2174/0127724328362434250224105609","DOIUrl":null,"url":null,"abstract":"<p><p>Ketamine, a substance used for anesthesia and known for inducing dissociation, can lead to addiction and the development of severe withdrawal symptoms. Ketamine alters brain networks before affecting somesthetic sensation. Ketamine abuse was especially prevalent in East and Southeast Asia, and its popularity has continued to expand globally in recent decades. Ketamine is gaining popularity in the public and private sectors as a cheaper off-label depression treatment. Unfortunately, ketamine may cause side effects, such as heart and blood vessel instability, respiratory depression, liver injury, hallucinations, etc. The pain-relieving and mental effects of ketamine might induce reliance; thus, it should be used cautiously. This review highlights the neurobiological processes underpinnings of ketamine's addictive potential, withdrawal, and its effects on brain networks like the prefrontal cortex, hippocampus, and mesolimbic pathway, which play vital roles in decision-making, memory, and reward processing. In addition, the involvement of neurotransmitter systems, specifically glutamate and dopamine, in mediating the addictive properties of ketamine and the neuroadaptive changes that occurred during withdrawal are also discussed. It also explains that low-dose ketamine can alter the secretion of stress hormone cortisol and hypothalamic-pituitary-adrenal (HPA) axis dysregulation, possibly attributed to the current repurposing study of ketamine as a fast-acting antidepressant. Understanding these pathways is essential for developing effective ketamine addiction treatments, managing withdrawal symptoms, and possibly reversing brain changes for the betterment of human health and psychological well- being.</p>","PeriodicalId":29871,"journal":{"name":"Current Reviews in Clinical and Experimental Pharmacology","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Reviews in Clinical and Experimental Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0127724328362434250224105609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Ketamine, a substance used for anesthesia and known for inducing dissociation, can lead to addiction and the development of severe withdrawal symptoms. Ketamine alters brain networks before affecting somesthetic sensation. Ketamine abuse was especially prevalent in East and Southeast Asia, and its popularity has continued to expand globally in recent decades. Ketamine is gaining popularity in the public and private sectors as a cheaper off-label depression treatment. Unfortunately, ketamine may cause side effects, such as heart and blood vessel instability, respiratory depression, liver injury, hallucinations, etc. The pain-relieving and mental effects of ketamine might induce reliance; thus, it should be used cautiously. This review highlights the neurobiological processes underpinnings of ketamine's addictive potential, withdrawal, and its effects on brain networks like the prefrontal cortex, hippocampus, and mesolimbic pathway, which play vital roles in decision-making, memory, and reward processing. In addition, the involvement of neurotransmitter systems, specifically glutamate and dopamine, in mediating the addictive properties of ketamine and the neuroadaptive changes that occurred during withdrawal are also discussed. It also explains that low-dose ketamine can alter the secretion of stress hormone cortisol and hypothalamic-pituitary-adrenal (HPA) axis dysregulation, possibly attributed to the current repurposing study of ketamine as a fast-acting antidepressant. Understanding these pathways is essential for developing effective ketamine addiction treatments, managing withdrawal symptoms, and possibly reversing brain changes for the betterment of human health and psychological well- being.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
9.10%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信