Adenine base editing rescues pathogenic phenotypes in tissue engineered vascular model of Hutchinson-Gilford progeria syndrome.

IF 6.6 3区 医学 Q1 ENGINEERING, BIOMEDICAL
APL Bioengineering Pub Date : 2025-02-26 eCollection Date: 2025-03-01 DOI:10.1063/5.0244026
Nadia O Abutaleb, Xin D Gao, Akhil Bedapudi, Leandro Choi, Kevin L Shores, Crystal Kennedy, Jordyn E Duby, Kan Cao, David R Liu, George A Truskey
{"title":"Adenine base editing rescues pathogenic phenotypes in tissue engineered vascular model of Hutchinson-Gilford progeria syndrome.","authors":"Nadia O Abutaleb, Xin D Gao, Akhil Bedapudi, Leandro Choi, Kevin L Shores, Crystal Kennedy, Jordyn E Duby, Kan Cao, David R Liu, George A Truskey","doi":"10.1063/5.0244026","DOIUrl":null,"url":null,"abstract":"<p><p>The rare, accelerated aging disease Hutchinson-Gilford Progeria Syndrome (HGPS) is commonly caused by a <i>de novo</i> c.1824 C > T point mutation of the <i>LMNA</i> gene that results in the protein progerin. The primary cause of death is a heart attack or stroke arising from atherosclerosis. A characteristic feature of HGPS arteries is loss of smooth muscle cells. An adenine base editor (ABE7.10max) corrected the point mutation and produced significant improvement in HGPS mouse lifespan, vascular smooth muscle cell density, and adventitial fibrosis. To assess whether base editing correction of human HGPS tissue engineered blood vessels (TEBVs) prevents the HGPS vascular phenotype and to identify the minimum fraction of edited smooth muscle cells needed to effect such changes, we transduced HGPS iPSCs with lentivirus containing ABE7.10max. Endothelial cells (viECs) and smooth muscle cells (viSMCs) obtained by differentiation of edited HGPS iPSCs did not express progerin and had double-stranded DNA breaks and reactive oxygen species at the same levels as healthy viSMCs and viECs. Editing HGPSviECs restored a normal response to shear stress. Normal vasodilation and viSMC density were restored in TEBVs made with edited cells. When TEBVs were prepared with at least 50% edited smooth muscle cells, viSMC proliferation and myosin heavy chain levels significantly improved. Sequencing of TEBV cells after perfusion indicated an enrichment of edited cells after 5 weeks of perfusion when they comprised 50% of the initial number of cells in the TEBVs. Thus, base editing correction of a fraction of HGPS vascular cells improves human TEBV phenotype.</p>","PeriodicalId":46288,"journal":{"name":"APL Bioengineering","volume":"9 1","pages":"016110"},"PeriodicalIF":6.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871533/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0244026","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rare, accelerated aging disease Hutchinson-Gilford Progeria Syndrome (HGPS) is commonly caused by a de novo c.1824 C > T point mutation of the LMNA gene that results in the protein progerin. The primary cause of death is a heart attack or stroke arising from atherosclerosis. A characteristic feature of HGPS arteries is loss of smooth muscle cells. An adenine base editor (ABE7.10max) corrected the point mutation and produced significant improvement in HGPS mouse lifespan, vascular smooth muscle cell density, and adventitial fibrosis. To assess whether base editing correction of human HGPS tissue engineered blood vessels (TEBVs) prevents the HGPS vascular phenotype and to identify the minimum fraction of edited smooth muscle cells needed to effect such changes, we transduced HGPS iPSCs with lentivirus containing ABE7.10max. Endothelial cells (viECs) and smooth muscle cells (viSMCs) obtained by differentiation of edited HGPS iPSCs did not express progerin and had double-stranded DNA breaks and reactive oxygen species at the same levels as healthy viSMCs and viECs. Editing HGPSviECs restored a normal response to shear stress. Normal vasodilation and viSMC density were restored in TEBVs made with edited cells. When TEBVs were prepared with at least 50% edited smooth muscle cells, viSMC proliferation and myosin heavy chain levels significantly improved. Sequencing of TEBV cells after perfusion indicated an enrichment of edited cells after 5 weeks of perfusion when they comprised 50% of the initial number of cells in the TEBVs. Thus, base editing correction of a fraction of HGPS vascular cells improves human TEBV phenotype.

腺嘌呤碱基编辑修复了Hutchinson-Gilford早衰综合征组织工程血管模型的致病表型。
罕见的加速衰老疾病哈钦森-吉尔福德早衰综合征(HGPS)通常是由新生c.1824引起的LMNA基因的C > T点突变导致蛋白progerin。死亡的主要原因是由动脉粥样硬化引起的心脏病发作或中风。HGPS动脉的一个特征是平滑肌细胞的丧失。腺嘌呤碱基编辑器(ABE7.10max)纠正了点突变,并显著改善了HGPS小鼠的寿命、血管平滑肌细胞密度和细胞外纤维化。为了评估人类HGPS组织工程血管(TEBVs)的碱基编辑校正是否会阻止HGPS血管表型,并确定实现这种改变所需的编辑平滑肌细胞的最小比例,我们用含有ABE7.10max的慢病毒转导HGPS iPSCs。通过编辑的HGPS iPSCs分化获得的内皮细胞(viec)和平滑肌细胞(viSMCs)不表达progerin,并且具有与健康的viSMCs和vimcs相同水平的双链DNA断裂和活性氧。编辑hgpsviec恢复了对剪切应力的正常响应。用编辑过的细胞制成的tebv恢复了正常的血管舒张和viSMC密度。当用至少50%编辑过的平滑肌细胞制备tebv时,viSMC增殖和肌球蛋白重链水平显著提高。灌注后的TEBV细胞测序表明,在灌注5周后,编辑细胞的富集,当它们占TEBV初始细胞数量的50%时。因此,对一小部分HGPS血管细胞进行碱基编辑校正可以改善人类TEBV表型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
APL Bioengineering
APL Bioengineering ENGINEERING, BIOMEDICAL-
CiteScore
9.30
自引率
6.70%
发文量
39
审稿时长
19 weeks
期刊介绍: APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities. APL Bioengineering publishes original research articles, reviews, and perspectives. Topical coverage includes: -Biofabrication and Bioprinting -Biomedical Materials, Sensors, and Imaging -Engineered Living Systems -Cell and Tissue Engineering -Regenerative Medicine -Molecular, Cell, and Tissue Biomechanics -Systems Biology and Computational Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信