Feel the Precision: Next-Gen Robotic Surgery With Haptic Feedback.

IF 0.3 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Janet Rae-Dupree
{"title":"Feel the Precision: Next-Gen Robotic Surgery With Haptic Feedback.","authors":"Janet Rae-Dupree","doi":"10.1109/MPULS.2025.3526484","DOIUrl":null,"url":null,"abstract":"<p><p>While robotic-assisted surgery has opened new frontiers for medical interventions, benefits haven't come without a cost. Surgeons have had to adapt to operating deep within a patient's body without a sense of touch. The technology to restore that sensation-haptic feedback-has been a research goal since robots were first introduced into the operating room. Intuitive Surgical in March 2024 announced that its new da Vinci 5 robotics platform would include integrated force feedback haptic technology-the first FDA-approved system to do so. Using it, surgeons can sense push and pull forces, feel tissue tension, and detect pressure from common tasks such as dissection, retraction, and suturing. But force feedback is only one part of haptics. Finer tactile sensations could open up new possibilities for robotic surgery. Researchers around the globe are developing promising approaches to provide tactile experiences, including at the University of California San Diego, where a team has developed a stretchable, conductive polymer that delivers low-current electrical signals to fingertips.</p>","PeriodicalId":49065,"journal":{"name":"IEEE Pulse","volume":"16 1","pages":"12-15"},"PeriodicalIF":0.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Pulse","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/MPULS.2025.3526484","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

While robotic-assisted surgery has opened new frontiers for medical interventions, benefits haven't come without a cost. Surgeons have had to adapt to operating deep within a patient's body without a sense of touch. The technology to restore that sensation-haptic feedback-has been a research goal since robots were first introduced into the operating room. Intuitive Surgical in March 2024 announced that its new da Vinci 5 robotics platform would include integrated force feedback haptic technology-the first FDA-approved system to do so. Using it, surgeons can sense push and pull forces, feel tissue tension, and detect pressure from common tasks such as dissection, retraction, and suturing. But force feedback is only one part of haptics. Finer tactile sensations could open up new possibilities for robotic surgery. Researchers around the globe are developing promising approaches to provide tactile experiences, including at the University of California San Diego, where a team has developed a stretchable, conductive polymer that delivers low-current electrical signals to fingertips.

求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Pulse
IEEE Pulse ENGINEERING, BIOMEDICAL-
CiteScore
1.10
自引率
0.00%
发文量
88
审稿时长
6-12 weeks
期刊介绍: IEEE Pulse covers both general and technical articles on current technologies and methods used in biomedical and clinical engineering; societal implications of medical technologies; current news items; book reviews; patent descriptions; and correspondence. Special interest departments, students, law, clinical engineering, ethics, new products, society news, historical features and government.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信