{"title":"Dynamic response characteristics of tunnel linings at varied burial depths in landslide systems under seismic loading.","authors":"Tao Li, Jun Liang, Luo Bo","doi":"10.1038/s41598-025-89774-8","DOIUrl":null,"url":null,"abstract":"<p><p>This paper uses shake table tests to study tunnel landslide failures in earthquake zones under four conditions: (GK1) the tunnel intersects the sliding mass, (GK2) the tunnel is perpendicular to the sliding surface, (GK3) the tunnel is positioned below the sliding surface, and (GK4) the tunnel is situated above the bedrock. The dynamic responses under the four conditions are analyzed using time-domain strain analysis methods. Additionally, from an energy perspective, the amplified Arias intensity (MIa) is employed to characterize the cumulative deformation damage of the tunnel lining. The results indicate that under four working conditions, the upper landslide region of the tunnel landslide system exhibits a \"settlement-compression-shear\" type of sliding failure. However, in conditions GK1 and GK2, where the lining structure is present, the tunnel lining provides additional support to the landslide, resulting in less severe damage to the slope compared to conditions GK3 and GK4. However, under conditions GK1 and GK2, the left sidewall of the tunnel lining experiences more severe damage due to landslide pressure. The maximum soil pressure and bending moment on the left sidewalls in GK3 and GK4 are only 40-60% of those observed in GK1 and GK2. In addition, based on the trend of MIa, the cumulative deformation evolution of the tunnel lining can be categorized into three stages: the initial stage (0.1-0.2 g), the progressive deformation stage (0.2-0.4 g), and the failure deformation stage (0.4-0.6 g). Further research confirms that under seismic action, the slope experiences a significant progressive catastrophic evolution. This process is characterized by typical seismic cumulative damage effects, with sustained seismic loading causing deformation and damage to gradually expand from localized areas to the entire slope. This continuous fatigue effect progressively weakens the stability of the lining structure, ultimately leading to its failure. Therefore, the deformation and damage of the slope under seismic loading pose a serious threat to the safety of tunnel linings, highlighting the need for close attention to their long-term stability. The research results provide a scientific basis for reinforcing tunnel linings in earthquake-prone mountainous areas.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"7528"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-89774-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This paper uses shake table tests to study tunnel landslide failures in earthquake zones under four conditions: (GK1) the tunnel intersects the sliding mass, (GK2) the tunnel is perpendicular to the sliding surface, (GK3) the tunnel is positioned below the sliding surface, and (GK4) the tunnel is situated above the bedrock. The dynamic responses under the four conditions are analyzed using time-domain strain analysis methods. Additionally, from an energy perspective, the amplified Arias intensity (MIa) is employed to characterize the cumulative deformation damage of the tunnel lining. The results indicate that under four working conditions, the upper landslide region of the tunnel landslide system exhibits a "settlement-compression-shear" type of sliding failure. However, in conditions GK1 and GK2, where the lining structure is present, the tunnel lining provides additional support to the landslide, resulting in less severe damage to the slope compared to conditions GK3 and GK4. However, under conditions GK1 and GK2, the left sidewall of the tunnel lining experiences more severe damage due to landslide pressure. The maximum soil pressure and bending moment on the left sidewalls in GK3 and GK4 are only 40-60% of those observed in GK1 and GK2. In addition, based on the trend of MIa, the cumulative deformation evolution of the tunnel lining can be categorized into three stages: the initial stage (0.1-0.2 g), the progressive deformation stage (0.2-0.4 g), and the failure deformation stage (0.4-0.6 g). Further research confirms that under seismic action, the slope experiences a significant progressive catastrophic evolution. This process is characterized by typical seismic cumulative damage effects, with sustained seismic loading causing deformation and damage to gradually expand from localized areas to the entire slope. This continuous fatigue effect progressively weakens the stability of the lining structure, ultimately leading to its failure. Therefore, the deformation and damage of the slope under seismic loading pose a serious threat to the safety of tunnel linings, highlighting the need for close attention to their long-term stability. The research results provide a scientific basis for reinforcing tunnel linings in earthquake-prone mountainous areas.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.