Coronavirus endoribonuclease antagonizes ZBP1-mediated necroptosis and delays multiple cell death pathways.

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Monika Evdokimova, Shuchen Feng, Allen Caobi, Fernando R Moreira, Dakota Jones, Konstantinos-Dionysios Alysandratos, Ena S Tully, Darrell N Kotton, David F Boyd, Bridget S Banach, Robert N Kirchdoerfer, Mohsan Saeed, Susan C Baker
{"title":"Coronavirus endoribonuclease antagonizes ZBP1-mediated necroptosis and delays multiple cell death pathways.","authors":"Monika Evdokimova, Shuchen Feng, Allen Caobi, Fernando R Moreira, Dakota Jones, Konstantinos-Dionysios Alysandratos, Ena S Tully, Darrell N Kotton, David F Boyd, Bridget S Banach, Robert N Kirchdoerfer, Mohsan Saeed, Susan C Baker","doi":"10.1073/pnas.2419620122","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying conserved mechanisms used by viruses to delay host innate responses can reveal potential targets for antiviral therapeutics. Here, we investigated coronavirus nonstructural protein 15 (nsp15), which encodes a highly conserved endoribonuclease (EndoU). EndoU functions as an immune antagonist by limiting the accumulation of viral replication intermediates that would otherwise be sensed by the host. Despite being a promising antiviral target, it has been difficult to develop small-molecule inhibitors that target the EndoU active site. We generated nsp15 mutants of the coronaviruses severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mouse hepatitis virus (MHV)-A59 and identified conserved residues within the amino-terminal domain that are required for EndoU activity. Loss of EndoU activity caused the activation of host sensors, which limited viral replication in interferon-responsive cells and attenuated disease in MHV-infected mice. Using transcriptional profiling, we found that MHV EndoU mutant viruses upregulate multiple host sensors, including Z-form nucleic acid-binding protein 1 (ZBP1). We found that nsp15 mutants induced early, robust ZBP1-mediated necroptosis. EndoU mutant viruses also induced ZBP1-independent apoptosis and pyroptosis pathways, causing early, robust cell death that limits virus replication and pathogenesis. Overall, we document the importance of the amino-terminal domain for EndoU function. We also highlight the importance of nsp15/EndoU activity for evading host sensors, delaying cell death, and promoting pathogenesis.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 10","pages":"e2419620122"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2419620122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying conserved mechanisms used by viruses to delay host innate responses can reveal potential targets for antiviral therapeutics. Here, we investigated coronavirus nonstructural protein 15 (nsp15), which encodes a highly conserved endoribonuclease (EndoU). EndoU functions as an immune antagonist by limiting the accumulation of viral replication intermediates that would otherwise be sensed by the host. Despite being a promising antiviral target, it has been difficult to develop small-molecule inhibitors that target the EndoU active site. We generated nsp15 mutants of the coronaviruses severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mouse hepatitis virus (MHV)-A59 and identified conserved residues within the amino-terminal domain that are required for EndoU activity. Loss of EndoU activity caused the activation of host sensors, which limited viral replication in interferon-responsive cells and attenuated disease in MHV-infected mice. Using transcriptional profiling, we found that MHV EndoU mutant viruses upregulate multiple host sensors, including Z-form nucleic acid-binding protein 1 (ZBP1). We found that nsp15 mutants induced early, robust ZBP1-mediated necroptosis. EndoU mutant viruses also induced ZBP1-independent apoptosis and pyroptosis pathways, causing early, robust cell death that limits virus replication and pathogenesis. Overall, we document the importance of the amino-terminal domain for EndoU function. We also highlight the importance of nsp15/EndoU activity for evading host sensors, delaying cell death, and promoting pathogenesis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信