{"title":"Shining a Light on Pacemaker Innovation.","authors":"Leslie Mertz","doi":"10.1109/MPULS.2024.3478856","DOIUrl":null,"url":null,"abstract":"<p><p>University of Chicago researchers have developed an ultra-lightweight, paper-thin, catheter-delivered cardiac pacemaker. Tested on a live pig, the pacemaker successfully regulated the heartbeat via tiny pulses of light. The design permits adjustments to the pacing as well as location of heart stimulation.</p>","PeriodicalId":49065,"journal":{"name":"IEEE Pulse","volume":"15 4","pages":"9-12"},"PeriodicalIF":0.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Pulse","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/MPULS.2024.3478856","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
University of Chicago researchers have developed an ultra-lightweight, paper-thin, catheter-delivered cardiac pacemaker. Tested on a live pig, the pacemaker successfully regulated the heartbeat via tiny pulses of light. The design permits adjustments to the pacing as well as location of heart stimulation.
期刊介绍:
IEEE Pulse covers both general and technical articles on current technologies and methods used in biomedical and clinical engineering; societal implications of medical technologies; current news items; book reviews; patent descriptions; and correspondence. Special interest departments, students, law, clinical engineering, ethics, new products, society news, historical features and government.