Genome-wide analysis of CBL and CIPK gene families in bermudagrass reveals the CdCIPK29-A1 as a stem growth angle regulator.

IF 5.3 2区 生物学 Q1 PLANT SCIENCES
Bing Zhang, Jianxiu Liu
{"title":"Genome-wide analysis of CBL and CIPK gene families in bermudagrass reveals the CdCIPK29-A1 as a stem growth angle regulator.","authors":"Bing Zhang, Jianxiu Liu","doi":"10.1007/s00299-025-03457-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Genome-wide analysis of CBL and CIPK gene family was conducted in bermudagrass while a functional role in stem growth angle regulation was established for CdCIPK29-A1 via the generation of molecularly modified Arabidopsis plants. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) are plant-specific Ca<sup>2+</sup> sensors and effectors which mediate diverse Ca<sup>2+</sup> signaling transduction pathways in plant growth, development, and stress responses. However, the functions of CBLs and CIPKs in bermudagrass (Cynodon dactylon L.), a widely planted warm-season turfgrass species with great economic value, remain poorly understood. In this study, a total of 33 CdCBL and 81 CdCIPK genes were identified in the bermudagrass genome, and were clustered in three and five groups according to their phylogenetic relationships, respectively. In line with their sequence divergence, different groups of CdCBL and CdCIPK genes exhibited different gene structures and expression patterns. Systematic yeast two-hybrid screening indicated that 27 CdCBL-CdCIPK complexes could be formed from 290 putative CdCBL and CdCIPK protein pairs. Among the CdCIPK proteins, CdCIPK29-A1 was found to interact with up to four CdCBL proteins. The CdCIPK29-A1 gene was preferentially expressed in the stolon internode of bermudagrass plants and the CdCIPK29-A1 protein was located to the cytoplasm. The expression of CdCIPK29-A1 in molecularly modified Arabidopsis thaliana (Arabidopsis) plants further indicated that CdCIPK29-A1 could regulate the stem growth angle and gravitropism possibly through modulating the starch metabolism in stem endodermal cells. These results not only established a solid foundation to explore the Ca<sup>2+</sup> signaling transduction pathways in bermudagrass but also provided new insight into the function of CBL-CIPK complex in plant gravitropic response and stem growth angle regulation.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 3","pages":"68"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-025-03457-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Key message: Genome-wide analysis of CBL and CIPK gene family was conducted in bermudagrass while a functional role in stem growth angle regulation was established for CdCIPK29-A1 via the generation of molecularly modified Arabidopsis plants. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) are plant-specific Ca2+ sensors and effectors which mediate diverse Ca2+ signaling transduction pathways in plant growth, development, and stress responses. However, the functions of CBLs and CIPKs in bermudagrass (Cynodon dactylon L.), a widely planted warm-season turfgrass species with great economic value, remain poorly understood. In this study, a total of 33 CdCBL and 81 CdCIPK genes were identified in the bermudagrass genome, and were clustered in three and five groups according to their phylogenetic relationships, respectively. In line with their sequence divergence, different groups of CdCBL and CdCIPK genes exhibited different gene structures and expression patterns. Systematic yeast two-hybrid screening indicated that 27 CdCBL-CdCIPK complexes could be formed from 290 putative CdCBL and CdCIPK protein pairs. Among the CdCIPK proteins, CdCIPK29-A1 was found to interact with up to four CdCBL proteins. The CdCIPK29-A1 gene was preferentially expressed in the stolon internode of bermudagrass plants and the CdCIPK29-A1 protein was located to the cytoplasm. The expression of CdCIPK29-A1 in molecularly modified Arabidopsis thaliana (Arabidopsis) plants further indicated that CdCIPK29-A1 could regulate the stem growth angle and gravitropism possibly through modulating the starch metabolism in stem endodermal cells. These results not only established a solid foundation to explore the Ca2+ signaling transduction pathways in bermudagrass but also provided new insight into the function of CBL-CIPK complex in plant gravitropic response and stem growth angle regulation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Cell Reports
Plant Cell Reports 生物-植物科学
CiteScore
10.80
自引率
1.60%
发文量
135
审稿时长
3.2 months
期刊介绍: Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as: - genomics and genetics - metabolism - cell biology - abiotic and biotic stress - phytopathology - gene transfer and expression - molecular pharming - systems biology - nanobiotechnology - genome editing - phenomics and synthetic biology The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信