Identification and characterization of anthocyanins' composition and regulatory genes involved in anthocyanins biosynthesis in water dropwort (Oenanthe javanica).
Kai Feng, Nan Sun, Ya-Qing Bian, Wu-Di Rui, Ya-Jie Yan, Zhi-Yuan Yang, Jia-Lu Liu, Zi-Qi Zhou, Shu-Ping Zhao, Peng Wu, Liang-Jun Li
{"title":"Identification and characterization of anthocyanins' composition and regulatory genes involved in anthocyanins biosynthesis in water dropwort (Oenanthe javanica).","authors":"Kai Feng, Nan Sun, Ya-Qing Bian, Wu-Di Rui, Ya-Jie Yan, Zhi-Yuan Yang, Jia-Lu Liu, Zi-Qi Zhou, Shu-Ping Zhao, Peng Wu, Liang-Jun Li","doi":"10.1007/s00425-025-04660-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Main conclusion: </strong>This study showed that anthocyanin was the main pigments related to purple stem and OjUFGT1 is involved in anthocyanin glycosylation in water dropwort. Water dropwort is a kind of aquatic vegetable with many medicinal values. In the study, the green-stem water dropwort 'FQ1H' and purple-stem water dropwort 'Sq013' were selected as plant materials. The anthocyanins composition was determined by UPLC-MS/MS and the transcript profile was analyzed based on RNA-seq in water dropwort. Nine anthocyanins were identified from water dropwort by UPLC-MS/MS. Petunidin and anthocyanin have higher content, which play a crucial role in the formation of purple stem. In total, 20,478 DEGs were identified in the purple stem, which might have a high correlation with anthocyanin accumulation. The expressions of 26 DEGs encoding anthocyanin biosynthesis structural genes were determined. Furthermore, co-expression analysis indicated that many R2R3-MYB and bHLH transcription factors were potentially involved in anthocyanin biosynthesis. In vitro enzyme activity assay showed that glycosyltransferase OjUFGT1 recognizes UDP-galactose as glycosyl donor and converts cyanidin to cyanidin-3-O-galactoside. In summary, these results may facilitate the development of our breeding and utilization for the high-anthocyanin water dropwort in the future.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"261 4","pages":"76"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planta","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00425-025-04660-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Main conclusion: This study showed that anthocyanin was the main pigments related to purple stem and OjUFGT1 is involved in anthocyanin glycosylation in water dropwort. Water dropwort is a kind of aquatic vegetable with many medicinal values. In the study, the green-stem water dropwort 'FQ1H' and purple-stem water dropwort 'Sq013' were selected as plant materials. The anthocyanins composition was determined by UPLC-MS/MS and the transcript profile was analyzed based on RNA-seq in water dropwort. Nine anthocyanins were identified from water dropwort by UPLC-MS/MS. Petunidin and anthocyanin have higher content, which play a crucial role in the formation of purple stem. In total, 20,478 DEGs were identified in the purple stem, which might have a high correlation with anthocyanin accumulation. The expressions of 26 DEGs encoding anthocyanin biosynthesis structural genes were determined. Furthermore, co-expression analysis indicated that many R2R3-MYB and bHLH transcription factors were potentially involved in anthocyanin biosynthesis. In vitro enzyme activity assay showed that glycosyltransferase OjUFGT1 recognizes UDP-galactose as glycosyl donor and converts cyanidin to cyanidin-3-O-galactoside. In summary, these results may facilitate the development of our breeding and utilization for the high-anthocyanin water dropwort in the future.
期刊介绍:
Planta publishes timely and substantial articles on all aspects of plant biology.
We welcome original research papers on any plant species. Areas of interest include biochemistry, bioenergy, biotechnology, cell biology, development, ecological and environmental physiology, growth, metabolism, morphogenesis, molecular biology, new methods, physiology, plant-microbe interactions, structural biology, and systems biology.