Identification and characterization of anthocyanins' composition and regulatory genes involved in anthocyanins biosynthesis in water dropwort (Oenanthe javanica).

IF 3.6 3区 生物学 Q1 PLANT SCIENCES
Planta Pub Date : 2025-03-04 DOI:10.1007/s00425-025-04660-x
Kai Feng, Nan Sun, Ya-Qing Bian, Wu-Di Rui, Ya-Jie Yan, Zhi-Yuan Yang, Jia-Lu Liu, Zi-Qi Zhou, Shu-Ping Zhao, Peng Wu, Liang-Jun Li
{"title":"Identification and characterization of anthocyanins' composition and regulatory genes involved in anthocyanins biosynthesis in water dropwort (Oenanthe javanica).","authors":"Kai Feng, Nan Sun, Ya-Qing Bian, Wu-Di Rui, Ya-Jie Yan, Zhi-Yuan Yang, Jia-Lu Liu, Zi-Qi Zhou, Shu-Ping Zhao, Peng Wu, Liang-Jun Li","doi":"10.1007/s00425-025-04660-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Main conclusion: </strong>This study showed that anthocyanin was the main pigments related to purple stem and OjUFGT1 is involved in anthocyanin glycosylation in water dropwort. Water dropwort is a kind of aquatic vegetable with many medicinal values. In the study, the green-stem water dropwort 'FQ1H' and purple-stem water dropwort 'Sq013' were selected as plant materials. The anthocyanins composition was determined by UPLC-MS/MS and the transcript profile was analyzed based on RNA-seq in water dropwort. Nine anthocyanins were identified from water dropwort by UPLC-MS/MS. Petunidin and anthocyanin have higher content, which play a crucial role in the formation of purple stem. In total, 20,478 DEGs were identified in the purple stem, which might have a high correlation with anthocyanin accumulation. The expressions of 26 DEGs encoding anthocyanin biosynthesis structural genes were determined. Furthermore, co-expression analysis indicated that many R2R3-MYB and bHLH transcription factors were potentially involved in anthocyanin biosynthesis. In vitro enzyme activity assay showed that glycosyltransferase OjUFGT1 recognizes UDP-galactose as glycosyl donor and converts cyanidin to cyanidin-3-O-galactoside. In summary, these results may facilitate the development of our breeding and utilization for the high-anthocyanin water dropwort in the future.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"261 4","pages":"76"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planta","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00425-025-04660-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Main conclusion: This study showed that anthocyanin was the main pigments related to purple stem and OjUFGT1 is involved in anthocyanin glycosylation in water dropwort. Water dropwort is a kind of aquatic vegetable with many medicinal values. In the study, the green-stem water dropwort 'FQ1H' and purple-stem water dropwort 'Sq013' were selected as plant materials. The anthocyanins composition was determined by UPLC-MS/MS and the transcript profile was analyzed based on RNA-seq in water dropwort. Nine anthocyanins were identified from water dropwort by UPLC-MS/MS. Petunidin and anthocyanin have higher content, which play a crucial role in the formation of purple stem. In total, 20,478 DEGs were identified in the purple stem, which might have a high correlation with anthocyanin accumulation. The expressions of 26 DEGs encoding anthocyanin biosynthesis structural genes were determined. Furthermore, co-expression analysis indicated that many R2R3-MYB and bHLH transcription factors were potentially involved in anthocyanin biosynthesis. In vitro enzyme activity assay showed that glycosyltransferase OjUFGT1 recognizes UDP-galactose as glycosyl donor and converts cyanidin to cyanidin-3-O-galactoside. In summary, these results may facilitate the development of our breeding and utilization for the high-anthocyanin water dropwort in the future.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Planta
Planta 生物-植物科学
CiteScore
7.20
自引率
2.30%
发文量
217
审稿时长
2.3 months
期刊介绍: Planta publishes timely and substantial articles on all aspects of plant biology. We welcome original research papers on any plant species. Areas of interest include biochemistry, bioenergy, biotechnology, cell biology, development, ecological and environmental physiology, growth, metabolism, morphogenesis, molecular biology, new methods, physiology, plant-microbe interactions, structural biology, and systems biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信