Manal M Khowdiary, Hayder M Al-Kuraishy, Ali I Al-Gareeb, Ali K Albuhadily, Ahmed A Elhenawy, Eman K Rashwan, Athanasios Alexiou, Marios Papadakis, Mohammed E Abo-El Fetoh, Gaber El-Saber Batiha
{"title":"The Peripheral Amyloid-β Nexus: Connecting Alzheimer's Disease with Atherosclerosis through Shared Pathophysiological Mechanisms.","authors":"Manal M Khowdiary, Hayder M Al-Kuraishy, Ali I Al-Gareeb, Ali K Albuhadily, Ahmed A Elhenawy, Eman K Rashwan, Athanasios Alexiou, Marios Papadakis, Mohammed E Abo-El Fetoh, Gaber El-Saber Batiha","doi":"10.1007/s12017-025-08836-2","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) and atherosclerosis (AS) are two chronic diseases with seemingly distinct pathologies. However, emerging research points to a bidirectional relationship driven by common mechanisms, such as inflammation, oxidative stress, and dysregulation of Amyloid-Beta (Aβ). This review focuses on the role of Aβ as a critical molecular link between AD and AS, emphasizing its contribution to neuronal impairment and vascular damage. Specifically, peripheral Aβ produced in the pancreas and skeletal muscle tissues exacerbates AS by promoting endothelial dysfunction and insulin resistance (IR). Furthermore, AS accelerates AD progression by impairing cerebral blood flow and inducing chronic hypoxia, causing Aβ accumulation. This review critically evaluates recent findings, highlighting inconsistencies in clinical studies and suggesting future research directions. Understanding the bidirectional influence of AD and AS could pave the way for novel therapeutic approaches targeting shared molecular pathways, particularly emphasizing Aβ clearance and inflammation.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":"27 1","pages":"20"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876215/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroMolecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-025-08836-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) and atherosclerosis (AS) are two chronic diseases with seemingly distinct pathologies. However, emerging research points to a bidirectional relationship driven by common mechanisms, such as inflammation, oxidative stress, and dysregulation of Amyloid-Beta (Aβ). This review focuses on the role of Aβ as a critical molecular link between AD and AS, emphasizing its contribution to neuronal impairment and vascular damage. Specifically, peripheral Aβ produced in the pancreas and skeletal muscle tissues exacerbates AS by promoting endothelial dysfunction and insulin resistance (IR). Furthermore, AS accelerates AD progression by impairing cerebral blood flow and inducing chronic hypoxia, causing Aβ accumulation. This review critically evaluates recent findings, highlighting inconsistencies in clinical studies and suggesting future research directions. Understanding the bidirectional influence of AD and AS could pave the way for novel therapeutic approaches targeting shared molecular pathways, particularly emphasizing Aβ clearance and inflammation.
期刊介绍:
NeuroMolecular Medicine publishes cutting-edge original research articles and critical reviews on the molecular and biochemical basis of neurological disorders. Studies range from genetic analyses of human populations to animal and cell culture models of neurological disorders. Emerging findings concerning the identification of genetic aberrancies and their pathogenic mechanisms at the molecular and cellular levels will be included. Also covered are experimental analyses of molecular cascades involved in the development and adult plasticity of the nervous system, in neurological dysfunction, and in neuronal degeneration and repair. NeuroMolecular Medicine encompasses basic research in the fields of molecular genetics, signal transduction, plasticity, and cell death. The information published in NEMM will provide a window into the future of molecular medicine for the nervous system.