Deep-learning tool for early identification of non-traumatic intracranial hemorrhage etiology and application in clinical diagnostics based on computed tomography (CT) scans.
{"title":"Deep-learning tool for early identification of non-traumatic intracranial hemorrhage etiology and application in clinical diagnostics based on computed tomography (CT) scans.","authors":"Meng Zhao, Wenjie Li, Yifan Hu, Ruixuan Jiang, Yuanli Zhao, Dong Zhang, Yan Zhang, Rong Wang, Yong Cao, Qian Zhang, Yonggang Ma, Jiaxi Li, Shaochen Yu, Ran Zhang, Yefeng Zheng, Shuo Wang, Jizong Zhao","doi":"10.7717/peerj.18850","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To develop an artificial intelligence system that can accurately identify acute non-traumatic intracranial hemorrhage (ICH) etiology (aneurysms, hypertensive hemorrhage, arteriovenous malformation (AVM), Moyamoya disease (MMD), cavernous malformation (CM), or other causes) based on non-contrast computed tomography (NCCT) scans and investigate whether clinicians can benefit from it in a diagnostic setting.</p><p><strong>Methods: </strong>The deep learning model was developed with 1,868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018. We tested the model on two independent datasets (TT200 and SD 98) collected after April 2018. The model's diagnostic performance was compared with clinicians' performance. We further designed a simulated study to compare the clinicians' performance with and without the deep learning system complements.</p><p><strong>Results: </strong>The proposed deep learning system achieved area under the receiver operating curve of 0.986 (95% CI [0.967-1.000]) on aneurysms, 0.952 (0.917-0.987) on hypertensive hemorrhage, 0.950 (0.860-1.000) on arteriovenous malformation (AVM), 0.749 (0.586-0.912) on Moyamoya disease (MMD), 0.837 (0.704-0.969) on cavernous malformation (CM), and 0.839 (0.722-0.959) on other causes in TT200 dataset. Given a 90% specificity level, the sensitivities of our model were 97.1% and 90.9% for aneurysm and AVM diagnosis, respectively. On the test dataset SD98, the model achieved AUCs on aneurysms and hypertensive hemorrhage of 0.945 (95% CI [0.882-1.000]) and 0.883 (95% CI [0.818-0.948]), respectively. The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system complements.</p><p><strong>Conclusions: </strong>The proposed deep learning tool can be an accuracy tool for early identification of hemorrhage etiologies based on NCCT scans. It may also provide more information for clinicians for triage and further imaging examination selection.</p>","PeriodicalId":19799,"journal":{"name":"PeerJ","volume":"13 ","pages":"e18850"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871901/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7717/peerj.18850","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: To develop an artificial intelligence system that can accurately identify acute non-traumatic intracranial hemorrhage (ICH) etiology (aneurysms, hypertensive hemorrhage, arteriovenous malformation (AVM), Moyamoya disease (MMD), cavernous malformation (CM), or other causes) based on non-contrast computed tomography (NCCT) scans and investigate whether clinicians can benefit from it in a diagnostic setting.
Methods: The deep learning model was developed with 1,868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018. We tested the model on two independent datasets (TT200 and SD 98) collected after April 2018. The model's diagnostic performance was compared with clinicians' performance. We further designed a simulated study to compare the clinicians' performance with and without the deep learning system complements.
Results: The proposed deep learning system achieved area under the receiver operating curve of 0.986 (95% CI [0.967-1.000]) on aneurysms, 0.952 (0.917-0.987) on hypertensive hemorrhage, 0.950 (0.860-1.000) on arteriovenous malformation (AVM), 0.749 (0.586-0.912) on Moyamoya disease (MMD), 0.837 (0.704-0.969) on cavernous malformation (CM), and 0.839 (0.722-0.959) on other causes in TT200 dataset. Given a 90% specificity level, the sensitivities of our model were 97.1% and 90.9% for aneurysm and AVM diagnosis, respectively. On the test dataset SD98, the model achieved AUCs on aneurysms and hypertensive hemorrhage of 0.945 (95% CI [0.882-1.000]) and 0.883 (95% CI [0.818-0.948]), respectively. The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system complements.
Conclusions: The proposed deep learning tool can be an accuracy tool for early identification of hemorrhage etiologies based on NCCT scans. It may also provide more information for clinicians for triage and further imaging examination selection.
期刊介绍:
PeerJ is an open access peer-reviewed scientific journal covering research in the biological and medical sciences. At PeerJ, authors take out a lifetime publication plan (for as little as $99) which allows them to publish articles in the journal for free, forever. PeerJ has 5 Nobel Prize Winners on the Board; they have won several industry and media awards; and they are widely recognized as being one of the most interesting recent developments in academic publishing.