Brain dynamics alterations induced by partial sleep deprivation: An energy landscape study

IF 4.7 2区 医学 Q1 NEUROIMAGING
Yutong Wu , Liming Fan , Wei Chen , Xing Su , Simeng An , Nan Yao , Qian Zhu , Zi-Gang Huang , Youjun Li
{"title":"Brain dynamics alterations induced by partial sleep deprivation: An energy landscape study","authors":"Yutong Wu ,&nbsp;Liming Fan ,&nbsp;Wei Chen ,&nbsp;Xing Su ,&nbsp;Simeng An ,&nbsp;Nan Yao ,&nbsp;Qian Zhu ,&nbsp;Zi-Gang Huang ,&nbsp;Youjun Li","doi":"10.1016/j.neuroimage.2025.121108","DOIUrl":null,"url":null,"abstract":"<div><div>Partial sleep deprivation (PSD) alters neural activity of intrinsic brain networks involved in cognitive functions. However, the age-related time-varying properties of large-scale brain functional networks after PSD remain unknown. Our study applied energy landscape analysis to resting-state functional magnetic resonance imaging data to characterize the dominant brain activity patterns in 36 healthy young (19 females, 23.53 ± 2.36 years) and 33 healthy older (18 females, 68.81 ± 2.41 years) adults after full sleep (FS) and PSD. Dynamic properties of these patterns, including appearance probability, duration and transitions, were then calculated. Finally, a 10<sup>5</sup> steps numerical simulation was performed on each energy landscape. We found that the energy landscapes of the younger and older groups had similar hierarchical structures, including two major states and two minor states. The two major states showed complementary spontaneous activation patterns. But the PSD has altered the temporal evolution of these major brain states in younger participants, manifested by significantly higher appearance frequency of the major states and the direct transitions between major states than FS. These changes were not significant in older participants. Additionally, the weaker functional segregation between two modules assigned by two complementary major states was found during PSD than FS in young group. We further demonstrated that such abnormal brain network functional coordination was associated with the atypical brain dynamics and behaviors. These findings suggested a low-dimensional and restricted dynamic landscape of brain activity in young adults after PSD and provided new insight into understand the neural effects of PSD.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"310 ","pages":"Article 121108"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925001107","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Partial sleep deprivation (PSD) alters neural activity of intrinsic brain networks involved in cognitive functions. However, the age-related time-varying properties of large-scale brain functional networks after PSD remain unknown. Our study applied energy landscape analysis to resting-state functional magnetic resonance imaging data to characterize the dominant brain activity patterns in 36 healthy young (19 females, 23.53 ± 2.36 years) and 33 healthy older (18 females, 68.81 ± 2.41 years) adults after full sleep (FS) and PSD. Dynamic properties of these patterns, including appearance probability, duration and transitions, were then calculated. Finally, a 105 steps numerical simulation was performed on each energy landscape. We found that the energy landscapes of the younger and older groups had similar hierarchical structures, including two major states and two minor states. The two major states showed complementary spontaneous activation patterns. But the PSD has altered the temporal evolution of these major brain states in younger participants, manifested by significantly higher appearance frequency of the major states and the direct transitions between major states than FS. These changes were not significant in older participants. Additionally, the weaker functional segregation between two modules assigned by two complementary major states was found during PSD than FS in young group. We further demonstrated that such abnormal brain network functional coordination was associated with the atypical brain dynamics and behaviors. These findings suggested a low-dimensional and restricted dynamic landscape of brain activity in young adults after PSD and provided new insight into understand the neural effects of PSD.
求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信