Deciphering FOXM1 regulation: implications for stemness and metabolic adaptations in glioblastoma.

IF 2.8 4区 医学 Q2 ONCOLOGY
Kumari Swati, Saniya Arfin, Kirti Agrawal, Saurabh Kumar Jha, Ramya Lakshmi Rajendran, Anand Prakash, Dhruv Kumar, Prakash Gangadaran, Byeong-Cheol Ahn
{"title":"Deciphering FOXM1 regulation: implications for stemness and metabolic adaptations in glioblastoma.","authors":"Kumari Swati, Saniya Arfin, Kirti Agrawal, Saurabh Kumar Jha, Ramya Lakshmi Rajendran, Anand Prakash, Dhruv Kumar, Prakash Gangadaran, Byeong-Cheol Ahn","doi":"10.1007/s12032-025-02639-y","DOIUrl":null,"url":null,"abstract":"<p><p>The Forkhead box M1 (FOXM1) gene-mediated Wnt signaling pathway plays a significant role in the development and growth of glioblastoma multiforme (GBM), an exceptionally aggressive form of brain cancer. Our research explores the crucial involvement of the FOXM1 gene, a key transcription factor within the Wnt signaling pathway using bioinformatics techniques in both GBM and glioma stem cells (GSCs). Elevated FOXM1 gene expression is strongly associated with poor patient survival in GBM. Furthermore, FOXM1 gene expression is correlated with stemness-related factors, such as SOX2 and SOX9, which act as key drivers in the progression of cancer stem cells. Moreover, we specifically look into the direct associations of the FOXM1 gene with angiogenetic-related factors, metabolic genes, metastatic genes, pluripotency-related factors, immune cell infiltration, transcriptional networks, and functional category enrichment analysis, shedding light on the intricate molecular mechanisms involved in GBM initiation and progression. Additionally, our research identifies FOXM1-targeting miRNAs, revealing their potential as therapeutic candidates with implications for patient survival rates and DNA methylation patterns of the FOXM1 gene, uncovering insights into its epigenetic regulation. This knowledge contributes to a comprehensive understanding of the molecular landscape and potential avenues for developing more effective therapeutic approaches against GBM and GSCs.</p>","PeriodicalId":18433,"journal":{"name":"Medical Oncology","volume":"42 4","pages":"88"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12032-025-02639-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Forkhead box M1 (FOXM1) gene-mediated Wnt signaling pathway plays a significant role in the development and growth of glioblastoma multiforme (GBM), an exceptionally aggressive form of brain cancer. Our research explores the crucial involvement of the FOXM1 gene, a key transcription factor within the Wnt signaling pathway using bioinformatics techniques in both GBM and glioma stem cells (GSCs). Elevated FOXM1 gene expression is strongly associated with poor patient survival in GBM. Furthermore, FOXM1 gene expression is correlated with stemness-related factors, such as SOX2 and SOX9, which act as key drivers in the progression of cancer stem cells. Moreover, we specifically look into the direct associations of the FOXM1 gene with angiogenetic-related factors, metabolic genes, metastatic genes, pluripotency-related factors, immune cell infiltration, transcriptional networks, and functional category enrichment analysis, shedding light on the intricate molecular mechanisms involved in GBM initiation and progression. Additionally, our research identifies FOXM1-targeting miRNAs, revealing their potential as therapeutic candidates with implications for patient survival rates and DNA methylation patterns of the FOXM1 gene, uncovering insights into its epigenetic regulation. This knowledge contributes to a comprehensive understanding of the molecular landscape and potential avenues for developing more effective therapeutic approaches against GBM and GSCs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical Oncology
Medical Oncology 医学-肿瘤学
CiteScore
4.20
自引率
2.90%
发文量
259
审稿时长
1.4 months
期刊介绍: Medical Oncology (MO) communicates the results of clinical and experimental research in oncology and hematology, particularly experimental therapeutics within the fields of immunotherapy and chemotherapy. It also provides state-of-the-art reviews on clinical and experimental therapies. Topics covered include immunobiology, pathogenesis, and treatment of malignant tumors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信