Thermionic injection analysis in germanium nanowire Schottky junction FETs by means of 1D and 3D extraction methods.

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Raphael Behrle, Aníbal Pacheco-Sanchez, Sven Barth, Walter M Weber, Masiar Sistani
{"title":"Thermionic injection analysis in germanium nanowire Schottky junction FETs by means of 1D and 3D extraction methods.","authors":"Raphael Behrle, Aníbal Pacheco-Sanchez, Sven Barth, Walter M Weber, Masiar Sistani","doi":"10.1039/d4na00957f","DOIUrl":null,"url":null,"abstract":"<p><p>Schottky barrier field-effect transistors (SBFETs) are a promising family of devices suitable for realizing \"Beyond CMOS\" paradigms. As the SBFET device operation is strongly dependent on the metal-semiconductor junction properties, it is important to extract and understand the activation energy to inject charge carriers into the semiconductor channel. In this regard, the three-dimensional (3D) thermionic emission (TE) and the one-dimensional (1D) Landauer-Büttiker (LB) theory are among the most sophisticated methods. Here, both methods are used to analyze the charge carrier injection capabilities of Al-Ge-Al nanowire (NW) heterostructure SBFETs. While the 3D TE model underestimates the activation energy <i>E</i> <sub>a</sub> in strong accumulation, at the intrinsic off-point, where merely TE contributes to charge carrier transport, both models provide reasonable values close to the theoretically expected Schottky barrier height. Analyzing the underlying mathematical models of 3D TE and 1D LB reveals a quadratic and linear increase in TE depending on temperature, respectively. Moreover, until now effects on the <i>E</i> <sub>a</sub> originating from the 1D nature of the proposed device were rarely investigated in NW transistors. This comparison contributes to a better understanding and the advancement of SBFET devices and circuit technologies.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869317/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4na00957f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Schottky barrier field-effect transistors (SBFETs) are a promising family of devices suitable for realizing "Beyond CMOS" paradigms. As the SBFET device operation is strongly dependent on the metal-semiconductor junction properties, it is important to extract and understand the activation energy to inject charge carriers into the semiconductor channel. In this regard, the three-dimensional (3D) thermionic emission (TE) and the one-dimensional (1D) Landauer-Büttiker (LB) theory are among the most sophisticated methods. Here, both methods are used to analyze the charge carrier injection capabilities of Al-Ge-Al nanowire (NW) heterostructure SBFETs. While the 3D TE model underestimates the activation energy E a in strong accumulation, at the intrinsic off-point, where merely TE contributes to charge carrier transport, both models provide reasonable values close to the theoretically expected Schottky barrier height. Analyzing the underlying mathematical models of 3D TE and 1D LB reveals a quadratic and linear increase in TE depending on temperature, respectively. Moreover, until now effects on the E a originating from the 1D nature of the proposed device were rarely investigated in NW transistors. This comparison contributes to a better understanding and the advancement of SBFET devices and circuit technologies.

肖特基势垒场效应晶体管(SBFET)是适合实现 "超越 CMOS "范例的前景广阔的器件系列。由于 SBFET 器件的运行在很大程度上取决于金属-半导体结的特性,因此提取和了解将电荷载流子注入半导体沟道的活化能非常重要。在这方面,三维(3D)热离子发射(TE)和一维(1D)Landauer-Büttiker(LB)理论是最复杂的方法之一。在这里,这两种方法都被用来分析 Al-Ge-Al 纳米线 (NW) 异质结构 SBFET 的电荷载流子注入能力。虽然三维 TE 模型低估了强积累时的活化能 E a,但在本征偏离点(TE 仅有助于电荷载流子传输),这两种模型都提供了接近理论预期肖特基势垒高度的合理值。分析三维 TE 和一维 LB 的基本数学模型可以发现,TE 分别随温度呈二次方和线性增长。此外,迄今为止,很少有人研究过所提出器件的一维性质对 NW 晶体管中 E a 的影响。这一比较有助于更好地理解和发展 SBFET 器件和电路技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信