Considerations and recommendations from the ISMRM diffusion study group for preclinical diffusion MRI: Part 2-Ex vivo imaging: Added value and acquisition.
IF 3 3区 医学Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Kurt G Schilling, Francesco Grussu, Andrada Ianus, Brian Hansen, Amy F D Howard, Rachel L C Barrett, Manisha Aggarwal, Stijn Michielse, Fatima Nasrallah, Warda Syeda, Nian Wang, Jelle Veraart, Alard Roebroeck, Andrew F Bagdasarian, Cornelius Eichner, Farshid Sepehrband, Jan Zimmermann, Lucas Soustelle, Christien Bowman, Benjamin C Tendler, Andreea Hertanu, Ben Jeurissen, Marleen Verhoye, Lucio Frydman, Yohan van de Looij, David Hike, Jeff F Dunn, Karla Miller, Bennett A Landman, Noam Shemesh, Adam Anderson, Emilie McKinnon, Shawna Farquharson, Flavio Dell'Acqua, Carlo Pierpaoli, Ivana Drobnjak, Alexander Leemans, Kevin D Harkins, Maxime Descoteaux, Duan Xu, Hao Huang, Mathieu D Santin, Samuel C Grant, Andre Obenaus, Gene S Kim, Dan Wu, Denis Le Bihan, Stephen J Blackband, Luisa Ciobanu, Els Fieremans, Ruiliang Bai, Trygve B Leergaard, Jiangyang Zhang, Tim B Dyrby, G Allan Johnson, Julien Cohen-Adad, Matthew D Budde, Ileana O Jelescu
{"title":"Considerations and recommendations from the ISMRM diffusion study group for preclinical diffusion MRI: Part 2-Ex vivo imaging: Added value and acquisition.","authors":"Kurt G Schilling, Francesco Grussu, Andrada Ianus, Brian Hansen, Amy F D Howard, Rachel L C Barrett, Manisha Aggarwal, Stijn Michielse, Fatima Nasrallah, Warda Syeda, Nian Wang, Jelle Veraart, Alard Roebroeck, Andrew F Bagdasarian, Cornelius Eichner, Farshid Sepehrband, Jan Zimmermann, Lucas Soustelle, Christien Bowman, Benjamin C Tendler, Andreea Hertanu, Ben Jeurissen, Marleen Verhoye, Lucio Frydman, Yohan van de Looij, David Hike, Jeff F Dunn, Karla Miller, Bennett A Landman, Noam Shemesh, Adam Anderson, Emilie McKinnon, Shawna Farquharson, Flavio Dell'Acqua, Carlo Pierpaoli, Ivana Drobnjak, Alexander Leemans, Kevin D Harkins, Maxime Descoteaux, Duan Xu, Hao Huang, Mathieu D Santin, Samuel C Grant, Andre Obenaus, Gene S Kim, Dan Wu, Denis Le Bihan, Stephen J Blackband, Luisa Ciobanu, Els Fieremans, Ruiliang Bai, Trygve B Leergaard, Jiangyang Zhang, Tim B Dyrby, G Allan Johnson, Julien Cohen-Adad, Matthew D Budde, Ileana O Jelescu","doi":"10.1002/mrm.30435","DOIUrl":null,"url":null,"abstract":"<p><p>The value of preclinical diffusion MRI (dMRI) is substantial. While dMRI enables in vivo non-invasive characterization of tissue, ex vivo dMRI is increasingly being used to probe tissue microstructure and brain connectivity. Ex vivo dMRI has several experimental advantages including higher SNR and spatial resolution compared to in vivo studies, and enabling more advanced diffusion contrasts for improved microstructure and connectivity characterization. Another major advantage of ex vivo dMRI is the direct comparison with histological data, as a crucial methodological validation. However, there are a number of considerations that must be made when performing ex vivo experiments. The steps from tissue preparation, image acquisition and processing, and interpretation of results are complex, with many decisions that not only differ dramatically from in vivo imaging of small animals, but ultimately affect what questions can be answered using the data. This work represents \"Part 2\" of a three-part series of recommendations and considerations for preclinical dMRI. We describe best practices for dMRI of ex vivo tissue, with a focus on the value that ex vivo imaging adds to the field of dMRI and considerations in ex vivo image acquisition. We first give general considerations and foundational knowledge that must be considered when designing experiments. We briefly describe differences in specimens and models and discuss why some may be more or less appropriate for different studies. We then give guidelines for ex vivo protocols, including tissue fixation, sample preparation, and MR scanning. In each section, we attempt to provide guidelines and recommendations, but also highlight areas for which no guidelines exist (and why), and where future work should lie. An overarching goal herein is to enhance the rigor and reproducibility of ex vivo dMRI acquisitions and analyses, and thereby advance biomedical knowledge.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.30435","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
The value of preclinical diffusion MRI (dMRI) is substantial. While dMRI enables in vivo non-invasive characterization of tissue, ex vivo dMRI is increasingly being used to probe tissue microstructure and brain connectivity. Ex vivo dMRI has several experimental advantages including higher SNR and spatial resolution compared to in vivo studies, and enabling more advanced diffusion contrasts for improved microstructure and connectivity characterization. Another major advantage of ex vivo dMRI is the direct comparison with histological data, as a crucial methodological validation. However, there are a number of considerations that must be made when performing ex vivo experiments. The steps from tissue preparation, image acquisition and processing, and interpretation of results are complex, with many decisions that not only differ dramatically from in vivo imaging of small animals, but ultimately affect what questions can be answered using the data. This work represents "Part 2" of a three-part series of recommendations and considerations for preclinical dMRI. We describe best practices for dMRI of ex vivo tissue, with a focus on the value that ex vivo imaging adds to the field of dMRI and considerations in ex vivo image acquisition. We first give general considerations and foundational knowledge that must be considered when designing experiments. We briefly describe differences in specimens and models and discuss why some may be more or less appropriate for different studies. We then give guidelines for ex vivo protocols, including tissue fixation, sample preparation, and MR scanning. In each section, we attempt to provide guidelines and recommendations, but also highlight areas for which no guidelines exist (and why), and where future work should lie. An overarching goal herein is to enhance the rigor and reproducibility of ex vivo dMRI acquisitions and analyses, and thereby advance biomedical knowledge.
期刊介绍:
Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.