3D printed porous magnesium metal scaffolds with bioactive coating for bone defect repair: enhancing angiogenesis and osteogenesis.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jianting Ye, Bozun Miao, Yingjie Xiong, Yanjun Guan, Yuzheng Lu, Zhibo Jia, Yanbin Wu, Xiaohan Sun, Congcong Guan, Ruichao He, Xing Xiong, Huihui Jia, Hongyu Jiang, Zexian Liu, Yuxuan Zhang, Yu Wei, Wancheng Lin, Aiyuan Wang, Yu Wang, Haoye Meng, Wenjing Xu, Guangyin Yuan, Jiang Peng
{"title":"3D printed porous magnesium metal scaffolds with bioactive coating for bone defect repair: enhancing angiogenesis and osteogenesis.","authors":"Jianting Ye, Bozun Miao, Yingjie Xiong, Yanjun Guan, Yuzheng Lu, Zhibo Jia, Yanbin Wu, Xiaohan Sun, Congcong Guan, Ruichao He, Xing Xiong, Huihui Jia, Hongyu Jiang, Zexian Liu, Yuxuan Zhang, Yu Wei, Wancheng Lin, Aiyuan Wang, Yu Wang, Haoye Meng, Wenjing Xu, Guangyin Yuan, Jiang Peng","doi":"10.1186/s12951-025-03222-3","DOIUrl":null,"url":null,"abstract":"<p><p>In orthopedics, the effective treatment of bone defects remains a major challenge. Magnesium (Mg) metals, with their excellent biocompatibility and favorable osteoconductivity, osteoinductivity, and osseointegration properties, hold great promise for addressing this issue. However, the rapid degradation rate of magnesium restricts its clinical application. In this study, a triply periodic minimal surface (TPMS)-structured porous magnesium alloy (Mg-Nd-Zn-Zr, JDBM) was fabricated using the laser powder bed fusion (LPBF) process. Strontium-doped octacalcium phosphate (SrOCP) and strontium hydrogen phosphate biphasic composite coatings were applied to the surface of the scaffolds. The results showed that the TPMS structure exhibited porous biomimetic characteristics that resemble cancellous bone, promoting vascular ingrowth and new bone formation. Additionally, the SrOCP coating significantly increased the surface roughness and hydrophilicity of the scaffold, which enhanced cell adhesion and osteogenic differentiation. The SrOCP coating also markedly reduced the degradation rate of the JDBM scaffolds while ensuring the sustained release of bioactive ions (Mg²⁺, Zn²⁺, Sr²⁺, and Ca²⁺), thus maintaining the scaffolds' biofunctional activity. Compared to JDBM scaffolds, JDBM/SrOCP scaffolds exhibited better biocompatibility and stronger vascularization and bone regeneration capabilities both in vitro and in vivo. Overall, this study presents a novel strategy for the repair of bone defects using magnesium-based biomaterials, providing new insights for future clinical applications.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"160"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874660/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03222-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In orthopedics, the effective treatment of bone defects remains a major challenge. Magnesium (Mg) metals, with their excellent biocompatibility and favorable osteoconductivity, osteoinductivity, and osseointegration properties, hold great promise for addressing this issue. However, the rapid degradation rate of magnesium restricts its clinical application. In this study, a triply periodic minimal surface (TPMS)-structured porous magnesium alloy (Mg-Nd-Zn-Zr, JDBM) was fabricated using the laser powder bed fusion (LPBF) process. Strontium-doped octacalcium phosphate (SrOCP) and strontium hydrogen phosphate biphasic composite coatings were applied to the surface of the scaffolds. The results showed that the TPMS structure exhibited porous biomimetic characteristics that resemble cancellous bone, promoting vascular ingrowth and new bone formation. Additionally, the SrOCP coating significantly increased the surface roughness and hydrophilicity of the scaffold, which enhanced cell adhesion and osteogenic differentiation. The SrOCP coating also markedly reduced the degradation rate of the JDBM scaffolds while ensuring the sustained release of bioactive ions (Mg²⁺, Zn²⁺, Sr²⁺, and Ca²⁺), thus maintaining the scaffolds' biofunctional activity. Compared to JDBM scaffolds, JDBM/SrOCP scaffolds exhibited better biocompatibility and stronger vascularization and bone regeneration capabilities both in vitro and in vivo. Overall, this study presents a novel strategy for the repair of bone defects using magnesium-based biomaterials, providing new insights for future clinical applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信