Comparative Effectiveness of Immersive Virtual Reality and Traditional Didactic Training on Radiation Safety in Medical Professionals: A Crossover Study.
IF 1.8 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
{"title":"Comparative Effectiveness of Immersive Virtual Reality and Traditional Didactic Training on Radiation Safety in Medical Professionals: A Crossover Study.","authors":"Wanjiku Mwangi, Yuki Tanaka","doi":"10.1002/jmrs.867","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Radiation safety is critical in medical settings where ionising radiation is routinely used. Traditional didactic training methods often fail to provide the practical skills needed for effective safety protocol implementation. This study aimed to compare the effectiveness of virtual reality (VR)-based radiation safety training with traditional didactic methods in reducing radiation exposure among medical professionals. Secondary objectives included assessing participant satisfaction, engagement and confidence in applying radiation safety practices.</p><p><strong>Methods: </strong>A 2-year randomised crossover trial was conducted with 39 medical professionals from cardiac catheterization laboratories and orthopaedic theatres. Group A received VR training in Year 1 and didactic training in Year 2, while Group B received the reverse. Radiation exposure was measured using Landauer Vision dosimeters. Participant feedback on satisfaction, engagement and confidence was collected through surveys. Data were analysed using paired t-tests, generalised estimating equations and non-parametric tests.</p><p><strong>Results: </strong>VR training significantly reduced radiation exposure compared to didactic training, with larger effect sizes per hour of training. Group A showed significant reductions during Year 1 when they received VR training (Year 2: didactic training), while Group B exhibited similar reductions during Year 2 when they underwent VR training (Year 1: didactic training). Group A, which received VR training in Year 1 followed by didactic training in Year 2, showed significant reductions in radiation exposure during Year 1. Group B, which received didactic training in Year 1 followed by VR training in Year 2, exhibited similar reductions during Year 2. Participant satisfaction and engagement were higher with VR training (p < 0.001), and confidence in applying safety practices increased significantly following VR training (p < 0.001). Group A reported these improvements after VR training in Year 1, while Group B experienced similar benefits after VR training in Year 2. Group A reported these improvements after VR training in Year 1, while Group B experienced similar benefits after VR training in Year 2.</p><p><strong>Conclusion: </strong>The RadSafe VR Program is more effective than traditional didactic training in reducing radiation exposure among medical professionals. VR training enhances radiation safety practices, improves participant satisfaction and increases confidence, offering a scalable and cost-effective training solution.</p>","PeriodicalId":16382,"journal":{"name":"Journal of Medical Radiation Sciences","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Radiation Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jmrs.867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Radiation safety is critical in medical settings where ionising radiation is routinely used. Traditional didactic training methods often fail to provide the practical skills needed for effective safety protocol implementation. This study aimed to compare the effectiveness of virtual reality (VR)-based radiation safety training with traditional didactic methods in reducing radiation exposure among medical professionals. Secondary objectives included assessing participant satisfaction, engagement and confidence in applying radiation safety practices.
Methods: A 2-year randomised crossover trial was conducted with 39 medical professionals from cardiac catheterization laboratories and orthopaedic theatres. Group A received VR training in Year 1 and didactic training in Year 2, while Group B received the reverse. Radiation exposure was measured using Landauer Vision dosimeters. Participant feedback on satisfaction, engagement and confidence was collected through surveys. Data were analysed using paired t-tests, generalised estimating equations and non-parametric tests.
Results: VR training significantly reduced radiation exposure compared to didactic training, with larger effect sizes per hour of training. Group A showed significant reductions during Year 1 when they received VR training (Year 2: didactic training), while Group B exhibited similar reductions during Year 2 when they underwent VR training (Year 1: didactic training). Group A, which received VR training in Year 1 followed by didactic training in Year 2, showed significant reductions in radiation exposure during Year 1. Group B, which received didactic training in Year 1 followed by VR training in Year 2, exhibited similar reductions during Year 2. Participant satisfaction and engagement were higher with VR training (p < 0.001), and confidence in applying safety practices increased significantly following VR training (p < 0.001). Group A reported these improvements after VR training in Year 1, while Group B experienced similar benefits after VR training in Year 2. Group A reported these improvements after VR training in Year 1, while Group B experienced similar benefits after VR training in Year 2.
Conclusion: The RadSafe VR Program is more effective than traditional didactic training in reducing radiation exposure among medical professionals. VR training enhances radiation safety practices, improves participant satisfaction and increases confidence, offering a scalable and cost-effective training solution.
期刊介绍:
Journal of Medical Radiation Sciences (JMRS) is an international and multidisciplinary peer-reviewed journal that accepts manuscripts related to medical imaging / diagnostic radiography, radiation therapy, nuclear medicine, medical ultrasound / sonography, and the complementary disciplines of medical physics, radiology, radiation oncology, nursing, psychology and sociology. Manuscripts may take the form of: original articles, review articles, commentary articles, technical evaluations, case series and case studies. JMRS promotes excellence in international medical radiation science by the publication of contemporary and advanced research that encourages the adoption of the best clinical, scientific and educational practices in international communities. JMRS is the official professional journal of the Australian Society of Medical Imaging and Radiation Therapy (ASMIRT) and the New Zealand Institute of Medical Radiation Technology (NZIMRT).