Integrated Metabolomics and Transcriptomics Analyses Reveal Metabolic Changes in Primary Angiitis of the Central Nervous System.

IF 4.2 2区 医学 Q2 IMMUNOLOGY
Journal of Inflammation Research Pub Date : 2025-02-25 eCollection Date: 2025-01-01 DOI:10.2147/JIR.S503058
Ping Lu, Lingyun Cui, Lulin Zhang, Huabing Wang, Linlin Yin, Decai Tian, Xinghu Zhang
{"title":"Integrated Metabolomics and Transcriptomics Analyses Reveal Metabolic Changes in Primary Angiitis of the Central Nervous System.","authors":"Ping Lu, Lingyun Cui, Lulin Zhang, Huabing Wang, Linlin Yin, Decai Tian, Xinghu Zhang","doi":"10.2147/JIR.S503058","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Metabolic characterization of primary angiitis of the central nervous system (PACNS) is crucial for understanding the disease pathogenesis and progression mechanisms, but it has not been reported in patients. This study aimed to explore changes in the plasma metabolome during the active and remission phases of PACNS and identify potential biomarkers.</p><p><strong>Methods: </strong>We collected plasma samples from 35 patients with PACNS during the active and remission phases and 22 samples from patients with non-inflammatory disease as controls. Liquid and gas chromatography-mass spectrometry were used to analyze 63 plasma samples from 57 patients metabolically. Meanwhile, we cross-validated the metabolomics results with brain tissue transcriptomic data from comprehensive gene expression databases, enhancing the reliability of our conclusions.</p><p><strong>Results: </strong>A total of 3,233 metabolites were identified. Enrichment analysis showed significant changes in lactate/amino acid/glycerol-pyruvic-tricarboxylic acid, glycerophospholipid/sphingolipid-membrane metabolism, lysine/tryptophan-essential amino acid metabolism, and uracil metabolism pathways during the active phase of PACNS. These findings were confirmed in both the remission phase of PACNS patients and the transcriptomic samples. Meanwhile, metabolic abnormalities in patients with PACNS were observed with benzoxazole, sesquiterpenoid, and octyl-phenolic products, and enrichment of environmental pollutants and their estrogen-like effects. Twelve metabolites, including D-Ribose, 13s-HPODE, and C16 Sphinganine, showed potential diagnostic and therapeutic evaluation value.</p><p><strong>Conclusion: </strong>Our study identified potential biomarkers and metabolic characteristics of PACNS using integrated metabolomics and transcriptomics approaches. These findings highlight the importance of understanding PACNS from a metabolic perspective and guide future diagnostic and therapeutic strategies.</p>","PeriodicalId":16107,"journal":{"name":"Journal of Inflammation Research","volume":"18 ","pages":"2767-2780"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871944/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JIR.S503058","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Metabolic characterization of primary angiitis of the central nervous system (PACNS) is crucial for understanding the disease pathogenesis and progression mechanisms, but it has not been reported in patients. This study aimed to explore changes in the plasma metabolome during the active and remission phases of PACNS and identify potential biomarkers.

Methods: We collected plasma samples from 35 patients with PACNS during the active and remission phases and 22 samples from patients with non-inflammatory disease as controls. Liquid and gas chromatography-mass spectrometry were used to analyze 63 plasma samples from 57 patients metabolically. Meanwhile, we cross-validated the metabolomics results with brain tissue transcriptomic data from comprehensive gene expression databases, enhancing the reliability of our conclusions.

Results: A total of 3,233 metabolites were identified. Enrichment analysis showed significant changes in lactate/amino acid/glycerol-pyruvic-tricarboxylic acid, glycerophospholipid/sphingolipid-membrane metabolism, lysine/tryptophan-essential amino acid metabolism, and uracil metabolism pathways during the active phase of PACNS. These findings were confirmed in both the remission phase of PACNS patients and the transcriptomic samples. Meanwhile, metabolic abnormalities in patients with PACNS were observed with benzoxazole, sesquiterpenoid, and octyl-phenolic products, and enrichment of environmental pollutants and their estrogen-like effects. Twelve metabolites, including D-Ribose, 13s-HPODE, and C16 Sphinganine, showed potential diagnostic and therapeutic evaluation value.

Conclusion: Our study identified potential biomarkers and metabolic characteristics of PACNS using integrated metabolomics and transcriptomics approaches. These findings highlight the importance of understanding PACNS from a metabolic perspective and guide future diagnostic and therapeutic strategies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Inflammation Research
Journal of Inflammation Research Immunology and Microbiology-Immunology
CiteScore
6.10
自引率
2.20%
发文量
658
审稿时长
16 weeks
期刊介绍: An international, peer-reviewed, open access, online journal that welcomes laboratory and clinical findings on the molecular basis, cell biology and pharmacology of inflammation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信