{"title":"Zombie neurons in epilepsy: a burgeoning role for senescence in drug-resistant epilepsy.","authors":"Gemma L Carvill","doi":"10.1172/JCI189519","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular senescence is a cell state induced by irreparable cellular damage. The hallmark of senescence is cell cycle exit, yet neurons, which are postmitotic from birth, have also been found to undergo senescence. Neuronal senescence is prevalent in aging as well as in neurodegenerative disease. However, a role for senescence in epilepsy is virtually unexplored. In this issue of the JCI, Ge and authors used resected brain tissue from individuals with drug-resistant epilepsy, a genetic knockout mouse model, and a chemoconvulsant mouse model, to demonstrate a subset of cortical pyramidal senescent neurons that likely contribute to the pathophysiology of epilepsy. These findings highlight senescence as a possible target in precision-therapy approaches for epilepsy and warrant further investigation.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"135 5","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870726/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI189519","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cellular senescence is a cell state induced by irreparable cellular damage. The hallmark of senescence is cell cycle exit, yet neurons, which are postmitotic from birth, have also been found to undergo senescence. Neuronal senescence is prevalent in aging as well as in neurodegenerative disease. However, a role for senescence in epilepsy is virtually unexplored. In this issue of the JCI, Ge and authors used resected brain tissue from individuals with drug-resistant epilepsy, a genetic knockout mouse model, and a chemoconvulsant mouse model, to demonstrate a subset of cortical pyramidal senescent neurons that likely contribute to the pathophysiology of epilepsy. These findings highlight senescence as a possible target in precision-therapy approaches for epilepsy and warrant further investigation.
期刊介绍:
The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science.
The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others.
The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.