{"title":"Multimodal single-cell analyses reveal molecular markers of neuronal senescence in human drug-resistant epilepsy.","authors":"Qianqian Ge, Jiachao Yang, Fei Huang, Xinyue Dai, Chao Chen, Jingxin Guo, Mi Wang, Mengyue Zhu, Yijie Shao, Yuxian Xia, Yu Zhou, Jieqiao Peng, Suixin Deng, Jiachen Shi, Yiqi Hu, Huiying Zhang, Yi Wang, Xiaoqun Wang, Xiao-Ming Li, Zhong Chen, Yousheng Shu, Jun-Ming Zhu, Jianmin Zhang, Ying Shen, Shumin Duan, Shengjin Xu, Li Shen, Jiadong Chen","doi":"10.1172/JCI188942","DOIUrl":null,"url":null,"abstract":"<p><p>The histopathological neurons in the brain tissue of drug-resistant epilepsy exhibit aberrant cytoarchitecture and imbalanced synaptic circuit function. However, the gene expression changes of these neurons remain unknown, making it difficult to determine the diagnosis or to dissect the mechanism of drug-resistant epilepsy. By integrating whole-cell patch clamp recording and single-cell RNA-seq approaches, we identified a transcriptionally distinct subset of cortical pyramidal neurons. These neurons highly expressed genes CDKN1A (P21), CCL2, and NFKBIA, which associate with mTOR pathway, inflammatory response, and cellular senescence. We confirmed the expression of senescent marker genes in a subpopulation of cortical pyramidal neurons with enlarged soma size in the brain tissue of drug-resistant epilepsy. We further revealed the expression of senescent cell markers P21, P53, COX2, γ-H2AX, and β-Gal, and reduction of nuclear integrity marker Lamin B1 in histopathological neurons in the brain tissue of patients with drug-resistant epilepsy with different pathologies, but not in control brain tissue with no history of epilepsy. Additionally, chronic, but not acute, epileptic seizures induced senescent marker expression in cortical neurons in mouse models of drug-resistant epilepsy. These results provide important molecular markers for histopathological neurons and what we believe to be new insights into the pathophysiological mechanisms of drug-resistant epilepsy.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"135 5","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870744/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI188942","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The histopathological neurons in the brain tissue of drug-resistant epilepsy exhibit aberrant cytoarchitecture and imbalanced synaptic circuit function. However, the gene expression changes of these neurons remain unknown, making it difficult to determine the diagnosis or to dissect the mechanism of drug-resistant epilepsy. By integrating whole-cell patch clamp recording and single-cell RNA-seq approaches, we identified a transcriptionally distinct subset of cortical pyramidal neurons. These neurons highly expressed genes CDKN1A (P21), CCL2, and NFKBIA, which associate with mTOR pathway, inflammatory response, and cellular senescence. We confirmed the expression of senescent marker genes in a subpopulation of cortical pyramidal neurons with enlarged soma size in the brain tissue of drug-resistant epilepsy. We further revealed the expression of senescent cell markers P21, P53, COX2, γ-H2AX, and β-Gal, and reduction of nuclear integrity marker Lamin B1 in histopathological neurons in the brain tissue of patients with drug-resistant epilepsy with different pathologies, but not in control brain tissue with no history of epilepsy. Additionally, chronic, but not acute, epileptic seizures induced senescent marker expression in cortical neurons in mouse models of drug-resistant epilepsy. These results provide important molecular markers for histopathological neurons and what we believe to be new insights into the pathophysiological mechanisms of drug-resistant epilepsy.
期刊介绍:
The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science.
The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others.
The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.