Rational design, synthesis, and molecular modelling insights of dual DNA binders/DHFR inhibitors bearing arylidene-hydrazinyl-1,3-thiazole scaffold with apoptotic and anti-migratory potential in breast MCF-7 cancer cells.
Marwa H El-Wakil, Rasha A Ghazala, Hadeel A El-Dershaby, Danuta Drozdowska, Agnieszka Wróbel-Tałałaj, Cezary Parzych, Artur Ratkiewicz, Beata Kolesińska, Heba A Abd El-Razik, Farid S G Soliman
{"title":"Rational design, synthesis, and molecular modelling insights of dual DNA binders/DHFR inhibitors bearing arylidene-hydrazinyl-1,3-thiazole scaffold with apoptotic and anti-migratory potential in breast MCF-7 cancer cells.","authors":"Marwa H El-Wakil, Rasha A Ghazala, Hadeel A El-Dershaby, Danuta Drozdowska, Agnieszka Wróbel-Tałałaj, Cezary Parzych, Artur Ratkiewicz, Beata Kolesińska, Heba A Abd El-Razik, Farid S G Soliman","doi":"10.1080/14756366.2025.2468353","DOIUrl":null,"url":null,"abstract":"<p><p>In light of searching for new breast cancer therapies, DNA-targeted small molecules were rationally designed to simultaneously bind DNA and inhibit human dihydrofolate reductase (<i>h</i>DHFR). Fourteen new arylidene-hydrazinyl-1,3-thiazoles (<b>5-18</b>) were synthesised and their dual DNA groove binding potential and <i>in vitro h</i>DHFR inhibition were performed. Two compounds, <b>5</b> and <b>11</b>, proved their dual efficacy. Molecular docking and molecular dynamics simulations were performed for those active derivatives to explore their mode of binding and stability of interactions inside DHFR active site. Anti-breast cancer activity was assessed for <b>5</b> and <b>11</b> on MCF-7 cells using <b>MTX</b> as reference. IC<sub>50</sub> measurements revealed that both compounds were more potent and selective than <b>MTX</b>. Cytotoxicity was examined against normal skin fibroblasts to examine safety and selectivity Moreover, mechanistic studies including apoptosis induction and wound healing were performed. Further <i>in silico</i> ADMET assessment was conducted to determine their eligibility as drug leads suitable for future optimisation and development.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2468353"},"PeriodicalIF":5.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881662/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enzyme Inhibition and Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14756366.2025.2468353","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In light of searching for new breast cancer therapies, DNA-targeted small molecules were rationally designed to simultaneously bind DNA and inhibit human dihydrofolate reductase (hDHFR). Fourteen new arylidene-hydrazinyl-1,3-thiazoles (5-18) were synthesised and their dual DNA groove binding potential and in vitro hDHFR inhibition were performed. Two compounds, 5 and 11, proved their dual efficacy. Molecular docking and molecular dynamics simulations were performed for those active derivatives to explore their mode of binding and stability of interactions inside DHFR active site. Anti-breast cancer activity was assessed for 5 and 11 on MCF-7 cells using MTX as reference. IC50 measurements revealed that both compounds were more potent and selective than MTX. Cytotoxicity was examined against normal skin fibroblasts to examine safety and selectivity Moreover, mechanistic studies including apoptosis induction and wound healing were performed. Further in silico ADMET assessment was conducted to determine their eligibility as drug leads suitable for future optimisation and development.
期刊介绍:
Journal of Enzyme Inhibition and Medicinal Chemistry publishes open access research on enzyme inhibitors, inhibitory processes, and agonist/antagonist receptor interactions in the development of medicinal and anti-cancer agents.
Journal of Enzyme Inhibition and Medicinal Chemistry aims to provide an international and interdisciplinary platform for the latest findings in enzyme inhibition research.
The journal’s focus includes current developments in:
Enzymology;
Cell biology;
Chemical biology;
Microbiology;
Physiology;
Pharmacology leading to drug design;
Molecular recognition processes;
Distribution and metabolism of biologically active compounds.