On the role of the sorting platform in hierarchical type III secretion regulation in enteropathogenic Escherichia coli.

IF 2.7 3区 生物学 Q3 MICROBIOLOGY
Journal of Bacteriology Pub Date : 2025-03-20 Epub Date: 2025-03-03 DOI:10.1128/jb.00446-24
Arely Marcos-Vilchis, Norma Espinosa, Adrián F Alvarez, José L Puente, J Eduardo Soto, Bertha González-Pedrajo
{"title":"On the role of the sorting platform in hierarchical type III secretion regulation in enteropathogenic <i>Escherichia coli</i>.","authors":"Arely Marcos-Vilchis, Norma Espinosa, Adrián F Alvarez, José L Puente, J Eduardo Soto, Bertha González-Pedrajo","doi":"10.1128/jb.00446-24","DOIUrl":null,"url":null,"abstract":"<p><p>The virulence of enteropathogenic <i>Escherichia coli</i> (EPEC) depends on a type III secretion system (T3SS), a membrane-spanning apparatus that injects effector proteins into the cytoplasm of target enterocytes. The T3SS, or injectisome, is a self-assembled nanomachine whose biogenesis and function rely on the ordered secretion of three distinct categories of proteins: early, middle, and late type III substrates. In EPEC, this hierarchical secretion is assisted by several cytosolic protein complexes at the base of the injectisome. Among these, the sorting platform is involved in the recognition and sequential loading of the different classes of T3-substrates. In addition, a heterotrimeric gatekeeper complex, also known as a molecular switch, operates in concert with components of the T3SS export apparatus to guarantee the delivery of middle substrates prior to late substrate secretion. In this study, we showed that the sorting platform is differentially required for the secretion of distinct categories of substrates. Moreover, we demonstrated a cooperative interplay and protein-protein interactions between the sorting platform and the gatekeeper complex for proper middle and late substrate docking and secretion. Overall, our results provide new insights into the intricate molecular mechanisms that regulate protein secretion hierarchy during T3SS assembly.IMPORTANCEEnteropathogenic <i>Escherichia coli</i> employs a type III secretion system to deliver virulence proteins directly into host cells, disrupting multiple cellular processes to promote infection. This multiprotein system assembles in a precise stepwise manner, with specific proteins being recruited and secreted at distinct stages. The sorting platform and the gatekeeper complex play critical roles in regulating this process, but their cooperative mechanism has not been fully elucidated. Here, we reveal a novel functional interaction between these two components, which is critical for hierarchical substrate recognition and secretion. These findings advance our understanding of the molecular mechanisms underlying bacterial virulence and suggest new potential targets for antimicrobial strategies aimed at disrupting T3SS function.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0044624"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925242/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/jb.00446-24","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The virulence of enteropathogenic Escherichia coli (EPEC) depends on a type III secretion system (T3SS), a membrane-spanning apparatus that injects effector proteins into the cytoplasm of target enterocytes. The T3SS, or injectisome, is a self-assembled nanomachine whose biogenesis and function rely on the ordered secretion of three distinct categories of proteins: early, middle, and late type III substrates. In EPEC, this hierarchical secretion is assisted by several cytosolic protein complexes at the base of the injectisome. Among these, the sorting platform is involved in the recognition and sequential loading of the different classes of T3-substrates. In addition, a heterotrimeric gatekeeper complex, also known as a molecular switch, operates in concert with components of the T3SS export apparatus to guarantee the delivery of middle substrates prior to late substrate secretion. In this study, we showed that the sorting platform is differentially required for the secretion of distinct categories of substrates. Moreover, we demonstrated a cooperative interplay and protein-protein interactions between the sorting platform and the gatekeeper complex for proper middle and late substrate docking and secretion. Overall, our results provide new insights into the intricate molecular mechanisms that regulate protein secretion hierarchy during T3SS assembly.IMPORTANCEEnteropathogenic Escherichia coli employs a type III secretion system to deliver virulence proteins directly into host cells, disrupting multiple cellular processes to promote infection. This multiprotein system assembles in a precise stepwise manner, with specific proteins being recruited and secreted at distinct stages. The sorting platform and the gatekeeper complex play critical roles in regulating this process, but their cooperative mechanism has not been fully elucidated. Here, we reveal a novel functional interaction between these two components, which is critical for hierarchical substrate recognition and secretion. These findings advance our understanding of the molecular mechanisms underlying bacterial virulence and suggest new potential targets for antimicrobial strategies aimed at disrupting T3SS function.

分类平台在肠致病性大肠杆菌分级III型分泌调节中的作用
肠致病性大肠杆菌(EPEC)的毒力取决于III型分泌系统(T3SS),这是一种跨膜装置,可将效应蛋白注入目标肠细胞的细胞质中。T3SS或注射体是一种自组装的纳米机器,其生物发生和功能依赖于三种不同类型蛋白质的有序分泌:早期、中期和晚期III型底物。在EPEC中,这种分层分泌是由注射体底部的几个细胞质蛋白复合物辅助的。其中,分选平台涉及对不同类别t3基板的识别和顺序加载。此外,异三聚体看门人复合体,也被称为分子开关,与T3SS输出装置的组件协同工作,以确保在后期底物分泌之前交付中间底物。在本研究中,我们发现了不同种类底物的分泌对分选平台的要求是不同的。此外,我们证明了分选平台和看门人复合体之间的合作相互作用和蛋白质-蛋白质相互作用,以实现适当的中后期底物对接和分泌。总的来说,我们的研究结果为T3SS组装过程中调节蛋白质分泌层次的复杂分子机制提供了新的见解。肠致病性大肠杆菌采用III型分泌系统将毒力蛋白直接传递到宿主细胞中,破坏多种细胞过程以促进感染。这种多蛋白系统以精确的分步方式组装,在不同的阶段招募和分泌特定的蛋白质。分拣平台和看门人复合物在调控这一过程中发挥了关键作用,但它们的合作机制尚未完全阐明。在这里,我们揭示了这两个成分之间的一种新的功能相互作用,这对分层底物识别和分泌至关重要。这些发现促进了我们对细菌毒力的分子机制的理解,并为破坏T3SS功能的抗菌策略提供了新的潜在靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Bacteriology
Journal of Bacteriology 生物-微生物学
CiteScore
6.10
自引率
9.40%
发文量
324
审稿时长
1.3 months
期刊介绍: The Journal of Bacteriology (JB) publishes research articles that probe fundamental processes in bacteria, archaea and their viruses, and the molecular mechanisms by which they interact with each other and with their hosts and their environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信