Yin Qin, Kexin Li, Qiuhong Zhang, Jie Liu, Yu Xie, Tingting Zhang, Xiaoliang Wang, Li Zhang, Yu Jiang, Gang Liu
{"title":"Linoleic acid inhibits lipopolysaccharide-induced inflammation by promoting TLR4 regulated autophagy in murine RAW264.7 macrophages.","authors":"Yin Qin, Kexin Li, Qiuhong Zhang, Jie Liu, Yu Xie, Tingting Zhang, Xiaoliang Wang, Li Zhang, Yu Jiang, Gang Liu","doi":"10.32725/jab.2024.023","DOIUrl":null,"url":null,"abstract":"<p><p>Linoleic acid (LA), an essential fatty acid, has emerged as a pivotal regulator in disorders associated with inflammation in recent years; however, the underlying mechanisms are still not completely understood. We utilized network pharmacology and experimental methodologies to elucidate the mechanisms underlying the anti-inflammatory effects of LA. Our network pharmacology analysis revealed that LA shares common targets with sepsis. These targets are enriched in various pathways comprising C-type signaling pathway, PI3K-Akt signaling pathway, toll-like receptor signaling pathway, neutrophil extracellular trap formation, AMPK signaling pathway, and autophagy-animal. These findings suggest that LA may exert regulatory effects on inflammation and autophagy during sepsis. Subsequently, we established in vivo and ex vivo models of sepsis using lipopolysaccharide (LPS) in experimental study. Treatment with LA reduced lung damage in mice with LPS-induced lung injury, and reduced tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in plasma, bronchoalveolar lavage fluid (BALF), and peritoneal lavage fluid (PLF). LA also decreased the production of TNF-α and IL-6 in RAW264.7 macrophages exposed to LPS. In LPS-induced RAW264.7 macrophages, LA induced an elevation in LC3-II while causing a reduction in p62, which was associated with downregulation of toll-like receptor 4 (TLR4). We utilized 3-methyladenine (3-MA) to inhibit the autophagic activity, which reversed the modulatory effects of LA on LC3-II and p62. 3-MA also prevented the decline in TLR4 expression along with reduction in pro-inflammatory cytokines secretion. Our findings suggest that the activation of autophagy by LA may lead to the downregulation of TLR4, thereby exerting its anti-inflammatory effects.</p>","PeriodicalId":14912,"journal":{"name":"Journal of applied biomedicine","volume":"22 4","pages":"185-196"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.32725/jab.2024.023","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Linoleic acid (LA), an essential fatty acid, has emerged as a pivotal regulator in disorders associated with inflammation in recent years; however, the underlying mechanisms are still not completely understood. We utilized network pharmacology and experimental methodologies to elucidate the mechanisms underlying the anti-inflammatory effects of LA. Our network pharmacology analysis revealed that LA shares common targets with sepsis. These targets are enriched in various pathways comprising C-type signaling pathway, PI3K-Akt signaling pathway, toll-like receptor signaling pathway, neutrophil extracellular trap formation, AMPK signaling pathway, and autophagy-animal. These findings suggest that LA may exert regulatory effects on inflammation and autophagy during sepsis. Subsequently, we established in vivo and ex vivo models of sepsis using lipopolysaccharide (LPS) in experimental study. Treatment with LA reduced lung damage in mice with LPS-induced lung injury, and reduced tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in plasma, bronchoalveolar lavage fluid (BALF), and peritoneal lavage fluid (PLF). LA also decreased the production of TNF-α and IL-6 in RAW264.7 macrophages exposed to LPS. In LPS-induced RAW264.7 macrophages, LA induced an elevation in LC3-II while causing a reduction in p62, which was associated with downregulation of toll-like receptor 4 (TLR4). We utilized 3-methyladenine (3-MA) to inhibit the autophagic activity, which reversed the modulatory effects of LA on LC3-II and p62. 3-MA also prevented the decline in TLR4 expression along with reduction in pro-inflammatory cytokines secretion. Our findings suggest that the activation of autophagy by LA may lead to the downregulation of TLR4, thereby exerting its anti-inflammatory effects.
期刊介绍:
Journal of Applied Biomedicine promotes translation of basic biomedical research into clinical investigation, conversion of clinical evidence into practice in all medical fields, and publication of new ideas for conquering human health problems across disciplines.
Providing a unique perspective, this international journal publishes peer-reviewed original papers and reviews offering a sensible transfer of basic research to applied clinical medicine. Journal of Applied Biomedicine covers the latest developments in various fields of biomedicine with special attention to cardiology and cardiovascular diseases, genetics, immunology, environmental health, toxicology, neurology and oncology as well as multidisciplinary studies. The views of experts on current advances in nanotechnology and molecular/cell biology will be also considered for publication as long as they have a direct clinical impact on human health. The journal does not accept basic science research or research without significant clinical implications. Manuscripts with innovative ideas and approaches that bridge different fields and show clear perspectives for clinical applications are considered with top priority.