Jan Bures, Vera Radochova, Darina Kohoutova, Miroslav Zavoral, Kristina Hugova, Stepan Suchanek, Ondrej Soukup, Jan Martinek
{"title":"Endoscopic luminal impedance planimetry of the lower oesophageal sphincter and pylorus in experimental pigs: a pilot study.","authors":"Jan Bures, Vera Radochova, Darina Kohoutova, Miroslav Zavoral, Kristina Hugova, Stepan Suchanek, Ondrej Soukup, Jan Martinek","doi":"10.32725/jab.2024.026","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>The functional lumen imaging probe (FLIP) relies on the principle of impedance planimetry that enables direct measurement of intraluminal pressure, cross-sectional areas, and wall biomechanical properties. The aim of our pilot project was to introduce this method to assess function of the lower oesophageal sphincter and pyloric muscle in experimental pigs.</p><p><strong>Methods: </strong>All measurements were accomplished in one session in six adult female pigs (mean weight 34.2 ± 3.6 kg), using the EndoFLIP 1.0 System with EndoFLIP catheters. Five major parameters were evaluated: balloon pressure (mm Hg), estimated diameter (mm), cross-sectional area (mm2), distensibility (mm2/mm Hg), and zone compliance (mm3/mm Hg).</p><p><strong>Results: </strong>In total, 180 readings were successfully accomplished. Most of the measured values were nearing lower average figures for the lower oesophageal sphincter, and upper average figures for the pylorus in healthy humans. The porcine pyloric sphincter is composed of the Torus pyloricus. It serves as a study \"gatekeeper\" between the stomach and D1 duodenum, thus explaining higher pyloric readings. There was a clear trend for increasing values of CSA (cross-sectional area), diameter, and balloon pressure with increased filling balloon volumes. However, the sphincter distensibility did not change with increasing filling volumes, either for the lower oesophageal sphincter or pylorus.</p><p><strong>Conclusion: </strong>Endoscopic functional luminal planimetry in experimental pigs is feasible, both for the lower oesophageal sphincter and the pylorus. This is an important starting point for future experimental endoscopic trials and pharmacology studies.</p>","PeriodicalId":14912,"journal":{"name":"Journal of applied biomedicine","volume":"22 4","pages":"221-227"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.32725/jab.2024.026","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background/aims: The functional lumen imaging probe (FLIP) relies on the principle of impedance planimetry that enables direct measurement of intraluminal pressure, cross-sectional areas, and wall biomechanical properties. The aim of our pilot project was to introduce this method to assess function of the lower oesophageal sphincter and pyloric muscle in experimental pigs.
Methods: All measurements were accomplished in one session in six adult female pigs (mean weight 34.2 ± 3.6 kg), using the EndoFLIP 1.0 System with EndoFLIP catheters. Five major parameters were evaluated: balloon pressure (mm Hg), estimated diameter (mm), cross-sectional area (mm2), distensibility (mm2/mm Hg), and zone compliance (mm3/mm Hg).
Results: In total, 180 readings were successfully accomplished. Most of the measured values were nearing lower average figures for the lower oesophageal sphincter, and upper average figures for the pylorus in healthy humans. The porcine pyloric sphincter is composed of the Torus pyloricus. It serves as a study "gatekeeper" between the stomach and D1 duodenum, thus explaining higher pyloric readings. There was a clear trend for increasing values of CSA (cross-sectional area), diameter, and balloon pressure with increased filling balloon volumes. However, the sphincter distensibility did not change with increasing filling volumes, either for the lower oesophageal sphincter or pylorus.
Conclusion: Endoscopic functional luminal planimetry in experimental pigs is feasible, both for the lower oesophageal sphincter and the pylorus. This is an important starting point for future experimental endoscopic trials and pharmacology studies.
期刊介绍:
Journal of Applied Biomedicine promotes translation of basic biomedical research into clinical investigation, conversion of clinical evidence into practice in all medical fields, and publication of new ideas for conquering human health problems across disciplines.
Providing a unique perspective, this international journal publishes peer-reviewed original papers and reviews offering a sensible transfer of basic research to applied clinical medicine. Journal of Applied Biomedicine covers the latest developments in various fields of biomedicine with special attention to cardiology and cardiovascular diseases, genetics, immunology, environmental health, toxicology, neurology and oncology as well as multidisciplinary studies. The views of experts on current advances in nanotechnology and molecular/cell biology will be also considered for publication as long as they have a direct clinical impact on human health. The journal does not accept basic science research or research without significant clinical implications. Manuscripts with innovative ideas and approaches that bridge different fields and show clear perspectives for clinical applications are considered with top priority.