Exploring Brain-Body Interactions in Parkinson’s Disease: A Study on Dual-Task Performance

IF 4.8 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Maryam Sousani;Raul Fernandez Rojas;Elisabeth Preston;Maryam Ghahramani
{"title":"Exploring Brain-Body Interactions in Parkinson’s Disease: A Study on Dual-Task Performance","authors":"Maryam Sousani;Raul Fernandez Rojas;Elisabeth Preston;Maryam Ghahramani","doi":"10.1109/TNSRE.2025.3546278","DOIUrl":null,"url":null,"abstract":"Parkinson’s disease (PD) leads to impairments in cortical structures, resulting in motor and cognitive symptoms. Given the connection between brain structure deficits and physical symptoms in PD, assessing objective brain activity and body motion could provide valuable insights for PD assessment and understanding its underlying mechanisms. This study aimed to explore the connection between brain activity and body movement metrics in a group of individuals with PD and an age-matched healthy control (HC) group. The goal was to evaluate the feasibility of using brain and body motion measures for assessing PD. Participants from both groups underwent the Timed Up and Go (TUG) test under three conditions: simple TUG, cognitive dual-task TUG (CDTUG), and motor dual-task TUG (MDTUG). Key findings include: Both groups exhibited similar activation patterns in the prefrontal cortex (PFC) during the simple TUG, with motor performance differences observed in cadence. During CDTUG, both groups showed the highest PFC activation with more pronounced motor impairments, such as higher stride and step time. During MDTUG, the HC group exhibited significantly higher PFC activity compared to the PD group. While both groups had similar patterns of activation in PFC area while TUG and CDTUG, they showed distinct behaviour during MDTUG. These results suggest that motor and cognitive impairments in PD are more pronounced during complex activities. While MDTUG effectively differentiated between PD and HC groups, the findings indicate that both cognitive and motor dual-tasks are essential for comprehensive PD assessment.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"984-993"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10906660","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10906660/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Parkinson’s disease (PD) leads to impairments in cortical structures, resulting in motor and cognitive symptoms. Given the connection between brain structure deficits and physical symptoms in PD, assessing objective brain activity and body motion could provide valuable insights for PD assessment and understanding its underlying mechanisms. This study aimed to explore the connection between brain activity and body movement metrics in a group of individuals with PD and an age-matched healthy control (HC) group. The goal was to evaluate the feasibility of using brain and body motion measures for assessing PD. Participants from both groups underwent the Timed Up and Go (TUG) test under three conditions: simple TUG, cognitive dual-task TUG (CDTUG), and motor dual-task TUG (MDTUG). Key findings include: Both groups exhibited similar activation patterns in the prefrontal cortex (PFC) during the simple TUG, with motor performance differences observed in cadence. During CDTUG, both groups showed the highest PFC activation with more pronounced motor impairments, such as higher stride and step time. During MDTUG, the HC group exhibited significantly higher PFC activity compared to the PD group. While both groups had similar patterns of activation in PFC area while TUG and CDTUG, they showed distinct behaviour during MDTUG. These results suggest that motor and cognitive impairments in PD are more pronounced during complex activities. While MDTUG effectively differentiated between PD and HC groups, the findings indicate that both cognitive and motor dual-tasks are essential for comprehensive PD assessment.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
8.20%
发文量
479
审稿时长
6-12 weeks
期刊介绍: Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信