Double Metal Dots Configuration for Suppression of Spurious Responses in Temperature Compensated Surface Acoustic Wave Resonators on SiO₂/LiNbO₃ Structure
{"title":"Double Metal Dots Configuration for Suppression of Spurious Responses in Temperature Compensated Surface Acoustic Wave Resonators on SiO₂/LiNbO₃ Structure","authors":"Temesgen Bailie Workie;Xiuwen Bi;Lingqin Zhang;Junyao Shen;Quhuan Shen;Jingfu Bao;Ken-ya Hashimoto","doi":"10.1109/TUFFC.2025.3526958","DOIUrl":null,"url":null,"abstract":"This article proposes a double metal dots interdigital transducer (IDT) configuration for suppression of spurious responses in temperature-compensated surface acoustic wave (SAW) resonators employing the SiO2/LiNbO3 structure. The proposed IDT configuration includes primary metal dots at the edges of the IDT aperture region, and in addition, secondary metal dots placed near the busbars with the addition of short dummy electrodes. This double metal dots IDT configuration enables us to effectively suppress two kinds of spurious resonances: the transverse resonances that are common and the ones that are predominantly excited in the gap regions between IDT finger edges and busbars. The impact of geometric parameters on suppressing spurious responses is studied using periodic 3-D finite element simulations. Then, it is shown both theoretically and experimentally that the proposed mechanism can effectively suppress almost all spurious responses without affecting the critical performance metrics such as the quality factor and electromechanical coupling coefficient.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"72 3","pages":"390-396"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10833761/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This article proposes a double metal dots interdigital transducer (IDT) configuration for suppression of spurious responses in temperature-compensated surface acoustic wave (SAW) resonators employing the SiO2/LiNbO3 structure. The proposed IDT configuration includes primary metal dots at the edges of the IDT aperture region, and in addition, secondary metal dots placed near the busbars with the addition of short dummy electrodes. This double metal dots IDT configuration enables us to effectively suppress two kinds of spurious resonances: the transverse resonances that are common and the ones that are predominantly excited in the gap regions between IDT finger edges and busbars. The impact of geometric parameters on suppressing spurious responses is studied using periodic 3-D finite element simulations. Then, it is shown both theoretically and experimentally that the proposed mechanism can effectively suppress almost all spurious responses without affecting the critical performance metrics such as the quality factor and electromechanical coupling coefficient.
期刊介绍:
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.