Stefanie Dencks, Matthew Lowerison, Joseph Hansen-Shearer, YiRang Shin, Georg Schmitz, Pengfei Song, Meng-Xing Tang
{"title":"Super-Resolution Ultrasound: From Data Acquisition and Motion Correction to Localization, Tracking, and Evaluation.","authors":"Stefanie Dencks, Matthew Lowerison, Joseph Hansen-Shearer, YiRang Shin, Georg Schmitz, Pengfei Song, Meng-Xing Tang","doi":"10.1109/TUFFC.2025.3543322","DOIUrl":null,"url":null,"abstract":"<p><p>Super-resolution ultrasound (SRUS) imaging through localizing and tracking microbubbles, also known as ultrasound localization microscopy (ULM), has achieved unprecedented resolution in deep tissue in vivo. In this review we will focus on the key technical steps of ULM, including data acquisition and tissue clutter removal, motion correction, localization, tracking, and final image visualization, as well as offering the authors' perspectives of the techniques. In each of the technical steps, we review what has been done and the state of the art, describe the key factors and parameters that influence each step, existing issues, and considerations when choosing the parameters. Finally, methods for evaluation of ULM image quality with or without ground truth are also reviewed.</p>","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"PP ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TUFFC.2025.3543322","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Super-resolution ultrasound (SRUS) imaging through localizing and tracking microbubbles, also known as ultrasound localization microscopy (ULM), has achieved unprecedented resolution in deep tissue in vivo. In this review we will focus on the key technical steps of ULM, including data acquisition and tissue clutter removal, motion correction, localization, tracking, and final image visualization, as well as offering the authors' perspectives of the techniques. In each of the technical steps, we review what has been done and the state of the art, describe the key factors and parameters that influence each step, existing issues, and considerations when choosing the parameters. Finally, methods for evaluation of ULM image quality with or without ground truth are also reviewed.
期刊介绍:
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.