A Targeted Nanotoxin Inhibits Colorectal Cancer Growth Through Local Tumor Pyroptosis and Eosinophil Infiltration and Degranulation.

IF 6.6 2区 医学 Q1 NANOSCIENCE & NANOTECHNOLOGY
International Journal of Nanomedicine Pub Date : 2025-02-26 eCollection Date: 2025-01-01 DOI:10.2147/IJN.S499192
Luis Miguel Carrasco-Díaz, Alberto Gallardo, Eric Voltà-Durán, Anna C Virgili, David Páez, Antonio Villaverde, Esther Vazquez, Patricia Álamo, Ugutz Unzueta, Isolda Casanova, Ramon Mangues, Lorena Alba-Castellon
{"title":"A Targeted Nanotoxin Inhibits Colorectal Cancer Growth Through Local Tumor Pyroptosis and Eosinophil Infiltration and Degranulation.","authors":"Luis Miguel Carrasco-Díaz, Alberto Gallardo, Eric Voltà-Durán, Anna C Virgili, David Páez, Antonio Villaverde, Esther Vazquez, Patricia Álamo, Ugutz Unzueta, Isolda Casanova, Ramon Mangues, Lorena Alba-Castellon","doi":"10.2147/IJN.S499192","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Colorectal cancer (CRC) has traditionally been treated with genotoxic chemotherapy to activate pro-apoptotic proteins to induce anticancer effects. However, cancer cells develop resistance to apoptosis, which leads to recurrence and poor prognosis. Moreover, this kind of therapy has been shown to be highly toxic to healthy tissues and, therefore, to patients. To overcome this issue, we developed a self-assembly tumor-targeted nanoparticle, T22-DITOX-H6, that incorporates the T22 peptide (a CXCR4 ligand) to selectively target cells overexpressing CXCR4, fused to the catalytic domain of diphtheria toxin, that exhibits a potent cytotoxic effect on these CXCR4+ cancer cells that exhibits potent cytotoxic effects on CXCR4-overexpressing cancer cells through the activation of pyroptosis, an immunogenic type of cell death.</p><p><strong>Methods: </strong>Colorectal CXCR4-expressing tumor cells (CT26-CXCR4+) were implanted subcutaneously into immunocompetent mice to study the effects of T22-DITOX-H6 treatment on tumor growth, cell death and innate immune cell recruitment to the tumor.</p><p><strong>Results: </strong>Here, we demonstrated that the T22-DITOX-H6 nanoparticle selectively activated pyroptosis, an immunogenic cell death that differs from apoptosis, leading to cell death in CXCR4-expressing cells, without affecting the viability of CXCR4-lacking cells. In addition, the nanoparticle administered to tumor-bearing mice induced a local antitumor effect due to the selective activation of pyroptosis in CXCR4+ targeted cancer cells. Biochemical analysis of plasma and histological analysis of non-tumor tissues revealed no differences between the groups. Remarkably, pyroptosis activation stimulates eosinophil infiltration into the tumor microenvironment, an effect recently reported to have an anti-tumorigenic function.</p><p><strong>Conclusion: </strong>These results highlight the dual role of CXCR4-targeted cytotoxic nanoparticle in eliminating cancer cells and boosting the self-immune response without compromising healthy organs.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"20 ","pages":"2445-2460"},"PeriodicalIF":6.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873025/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S499192","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Colorectal cancer (CRC) has traditionally been treated with genotoxic chemotherapy to activate pro-apoptotic proteins to induce anticancer effects. However, cancer cells develop resistance to apoptosis, which leads to recurrence and poor prognosis. Moreover, this kind of therapy has been shown to be highly toxic to healthy tissues and, therefore, to patients. To overcome this issue, we developed a self-assembly tumor-targeted nanoparticle, T22-DITOX-H6, that incorporates the T22 peptide (a CXCR4 ligand) to selectively target cells overexpressing CXCR4, fused to the catalytic domain of diphtheria toxin, that exhibits a potent cytotoxic effect on these CXCR4+ cancer cells that exhibits potent cytotoxic effects on CXCR4-overexpressing cancer cells through the activation of pyroptosis, an immunogenic type of cell death.

Methods: Colorectal CXCR4-expressing tumor cells (CT26-CXCR4+) were implanted subcutaneously into immunocompetent mice to study the effects of T22-DITOX-H6 treatment on tumor growth, cell death and innate immune cell recruitment to the tumor.

Results: Here, we demonstrated that the T22-DITOX-H6 nanoparticle selectively activated pyroptosis, an immunogenic cell death that differs from apoptosis, leading to cell death in CXCR4-expressing cells, without affecting the viability of CXCR4-lacking cells. In addition, the nanoparticle administered to tumor-bearing mice induced a local antitumor effect due to the selective activation of pyroptosis in CXCR4+ targeted cancer cells. Biochemical analysis of plasma and histological analysis of non-tumor tissues revealed no differences between the groups. Remarkably, pyroptosis activation stimulates eosinophil infiltration into the tumor microenvironment, an effect recently reported to have an anti-tumorigenic function.

Conclusion: These results highlight the dual role of CXCR4-targeted cytotoxic nanoparticle in eliminating cancer cells and boosting the self-immune response without compromising healthy organs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Nanomedicine
International Journal of Nanomedicine NANOSCIENCE & NANOTECHNOLOGY-PHARMACOLOGY & PHARMACY
CiteScore
14.40
自引率
3.80%
发文量
511
审稿时长
1.4 months
期刊介绍: The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area. With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field. Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信