Neural Correlation Integrated Adaptive Point Process Filtering on Population Spike Trains

IF 4.8 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Mingdong Li;Shuhang Chen;Xiang Zhang;Yiwen Wang
{"title":"Neural Correlation Integrated Adaptive Point Process Filtering on Population Spike Trains","authors":"Mingdong Li;Shuhang Chen;Xiang Zhang;Yiwen Wang","doi":"10.1109/TNSRE.2025.3545206","DOIUrl":null,"url":null,"abstract":"Brain encodes information through neural spiking activities that modulate external environmental stimuli and underlying internal states. Population of neurons coordinate through functional connectivity to plan movement trajectories and accurately activate neuromuscular activities. Motor Brain-machine interface (BMI) is a platform to study the relationship between behaviors and neural ensemble activities. In BMI, point process filters model directly on spike timings to extract underlying states such as motion intents from observed multi-neuron spike trains. However, these methods assume the encoded information from individual neurons is conditionally independent, which leads to less precise estimation. It is necessary to incorporate functional neural connectivity into a point process filter to improve the state estimation. In this paper, we propose a neural correlation integrated adaptive point process filter (CIPPF) that can incorporate the information from functional neural connectivity from population spike trains in a recursive Bayesian framework. Functional neural connectivity information is approximated by an artificial neural network to provide extra updating information for the posterior estimation. Gaussian approximation is applied on the probability distribution to obtain a closed-form solution. Our proposed method is validated on both simulation and real data collected from the rat two-lever discrimination task. Due to the simultaneous modeling of functional neural connectivity and single neuronal tuning properties, the proposed method shows better decoding performance. This suggests the possibility to improve BMI performance by processing the coordinated neural population activities.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"1014-1025"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10902622","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10902622/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Brain encodes information through neural spiking activities that modulate external environmental stimuli and underlying internal states. Population of neurons coordinate through functional connectivity to plan movement trajectories and accurately activate neuromuscular activities. Motor Brain-machine interface (BMI) is a platform to study the relationship between behaviors and neural ensemble activities. In BMI, point process filters model directly on spike timings to extract underlying states such as motion intents from observed multi-neuron spike trains. However, these methods assume the encoded information from individual neurons is conditionally independent, which leads to less precise estimation. It is necessary to incorporate functional neural connectivity into a point process filter to improve the state estimation. In this paper, we propose a neural correlation integrated adaptive point process filter (CIPPF) that can incorporate the information from functional neural connectivity from population spike trains in a recursive Bayesian framework. Functional neural connectivity information is approximated by an artificial neural network to provide extra updating information for the posterior estimation. Gaussian approximation is applied on the probability distribution to obtain a closed-form solution. Our proposed method is validated on both simulation and real data collected from the rat two-lever discrimination task. Due to the simultaneous modeling of functional neural connectivity and single neuronal tuning properties, the proposed method shows better decoding performance. This suggests the possibility to improve BMI performance by processing the coordinated neural population activities.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
8.20%
发文量
479
审稿时长
6-12 weeks
期刊介绍: Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信