{"title":"Recent Advances in the Mutual Regulation of m6A Modification and Non-Coding RNAs in Atherosclerosis.","authors":"Yanlu Wang, Sisi Ling, Hao Feng, Junkai Hua, Zhiyu Han, Renjie Chai","doi":"10.2147/IJGM.S508197","DOIUrl":null,"url":null,"abstract":"<p><p>Atherosclerosis, a progressive inflammatory disease of the arteries, remains a leading cause of cardiovascular morbidity and mortality worldwide. Recent years have witnessed the pivotal role of N6-methyladenosine (m6A) RNA methylation in regulating various biological processes, including those implicated in atherosclerosis. Current evidence suggested that m6A regulators (writers, erasers, and readers) participated in the modification of multiple non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), thereby affecting their metabolism and functions. Meanwhile, ncRNAs have also emerged as key modulator of m6A regulators expression in turn. Therefore, understanding the mutual regulation between m6A modifications and ncRNAs is of great significance to identify novel therapeutic targets for atherosclerosis and has great clinical application prospects. This review aims to summarize the recent advances in the reciprocal regulation and provide insights into the interaction between m6A modification and ncRNAs in the context of atherosclerosis.</p>","PeriodicalId":14131,"journal":{"name":"International Journal of General Medicine","volume":"18 ","pages":"1047-1073"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871936/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of General Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJGM.S508197","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Atherosclerosis, a progressive inflammatory disease of the arteries, remains a leading cause of cardiovascular morbidity and mortality worldwide. Recent years have witnessed the pivotal role of N6-methyladenosine (m6A) RNA methylation in regulating various biological processes, including those implicated in atherosclerosis. Current evidence suggested that m6A regulators (writers, erasers, and readers) participated in the modification of multiple non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), thereby affecting their metabolism and functions. Meanwhile, ncRNAs have also emerged as key modulator of m6A regulators expression in turn. Therefore, understanding the mutual regulation between m6A modifications and ncRNAs is of great significance to identify novel therapeutic targets for atherosclerosis and has great clinical application prospects. This review aims to summarize the recent advances in the reciprocal regulation and provide insights into the interaction between m6A modification and ncRNAs in the context of atherosclerosis.
期刊介绍:
The International Journal of General Medicine is an international, peer-reviewed, open access journal that focuses on general and internal medicine, pathogenesis, epidemiology, diagnosis, monitoring and treatment protocols. The journal is characterized by the rapid reporting of reviews, original research and clinical studies across all disease areas.
A key focus of the journal is the elucidation of disease processes and management protocols resulting in improved outcomes for the patient. Patient perspectives such as satisfaction, quality of life, health literacy and communication and their role in developing new healthcare programs and optimizing clinical outcomes are major areas of interest for the journal.
As of 1st April 2019, the International Journal of General Medicine will no longer consider meta-analyses for publication.