A GPR-based framework for assessing corrosivity of concrete structures using frequency domain approach.

IF 3.4 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Heliyon Pub Date : 2025-02-11 eCollection Date: 2025-02-28 DOI:10.1016/j.heliyon.2025.e42641
Nour Faris, Ahmed K Khalil, Mohamed A A Abdelkareem, Sherif Abdelkhalek, Ali Fares, Tarek Zayed, Ghasan Alfalah
{"title":"A GPR-based framework for assessing corrosivity of concrete structures using frequency domain approach.","authors":"Nour Faris, Ahmed K Khalil, Mohamed A A Abdelkareem, Sherif Abdelkhalek, Ali Fares, Tarek Zayed, Ghasan Alfalah","doi":"10.1016/j.heliyon.2025.e42641","DOIUrl":null,"url":null,"abstract":"<p><p>Ground-penetrating radar (GPR) is a prominent non-destructive testing (NDT) method for corrosivity evaluation in concrete structures. Most GPR interpretation methods rely solely on the absolute values of rebar reflection intensity, making them vulnerable to misinterpretation of the effects of complex factors. This study introduces a more comprehensive GPR data interpretation method, encompassing analysis in time and time-frequency domains. The developed method constitutes efficient GPR data collection and pre-processing, deep learning rebar recognition, and frequency domain analysis using the Short-Time Fourier Transform (STFT). The center frequency of rebar responses was normalized and depth-corrected to standardize the analysis method. The GPR condition mapping thresholds were optimized and validated using ground truth conditions from hammer tapping and reinforcement exposure of reinforced concrete walls. The method demonstrated superior performance compared to the traditional amplitude-based approach in detecting and quantifying the extent of corrosion-induced deterioration, with an average accuracy of 0.80 for active corrosion and 0.84 for active-corrosion with corrosion-induced delamination.</p>","PeriodicalId":12894,"journal":{"name":"Heliyon","volume":"11 4","pages":"e42641"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872417/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heliyon","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.heliyon.2025.e42641","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/28 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Ground-penetrating radar (GPR) is a prominent non-destructive testing (NDT) method for corrosivity evaluation in concrete structures. Most GPR interpretation methods rely solely on the absolute values of rebar reflection intensity, making them vulnerable to misinterpretation of the effects of complex factors. This study introduces a more comprehensive GPR data interpretation method, encompassing analysis in time and time-frequency domains. The developed method constitutes efficient GPR data collection and pre-processing, deep learning rebar recognition, and frequency domain analysis using the Short-Time Fourier Transform (STFT). The center frequency of rebar responses was normalized and depth-corrected to standardize the analysis method. The GPR condition mapping thresholds were optimized and validated using ground truth conditions from hammer tapping and reinforcement exposure of reinforced concrete walls. The method demonstrated superior performance compared to the traditional amplitude-based approach in detecting and quantifying the extent of corrosion-induced deterioration, with an average accuracy of 0.80 for active corrosion and 0.84 for active-corrosion with corrosion-induced delamination.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Heliyon
Heliyon MULTIDISCIPLINARY SCIENCES-
CiteScore
4.50
自引率
2.50%
发文量
2793
期刊介绍: Heliyon is an all-science, open access journal that is part of the Cell Press family. Any paper reporting scientifically accurate and valuable research, which adheres to accepted ethical and scientific publishing standards, will be considered for publication. Our growing team of dedicated section editors, along with our in-house team, handle your paper and manage the publication process end-to-end, giving your research the editorial support it deserves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信