Induced swimming in European seabass (Dicentrarchus labrax): effects on the stress response, immune, and antioxidant status.

IF 2.5 3区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Carlos Espírito-Santo, Francisco A Guardiola, Rodrigo O A Ozório, Leonardo J Magnoni
{"title":"Induced swimming in European seabass (Dicentrarchus labrax): effects on the stress response, immune, and antioxidant status.","authors":"Carlos Espírito-Santo, Francisco A Guardiola, Rodrigo O A Ozório, Leonardo J Magnoni","doi":"10.1007/s10695-025-01474-2","DOIUrl":null,"url":null,"abstract":"<p><p>Suitable swimming conditions can improve the growth and welfare of farmed fish. This study investigated how swimming affects immune and oxidative responses in European seabass (Dicentrarchus labrax), an important farmed fish species in Southern Europe. Thirty-two specimens were assigned into four experimental groups with the following conditions for 6 h: steady low (L, 0.8 body lengths (BL)⋅s<sup>-1</sup>); steady high (H, 2.2 BL⋅s<sup>-1</sup>); oscillating (O, 0.8-2.2 BL⋅s<sup>-1</sup>) swimming speeds; and control non-induced to swim (C, < 0.1 BL⋅s<sup>-1</sup>). The H group exhibited higher white blood cell counts and plasma cortisol levels compared to the C and L groups. However, innate immune parameters in plasma and skin mucus showed no differences between groups. Gene expression revealed an up-regulation of inflammatory cytokines (tnfα and il1β) and igf1 in the gills of fish from H and L groups, respectively, whilst no variations were observed in the head-kidney. In the skin, tnfα was up-regulated in the L group. Moreover, the H group showed increased superoxide dismutase and catalase activities and higher lipid peroxidation levels in red muscle. The L group had a higher ratio of reduced/oxidized glutathione (GSH: GSSG) in red muscle, suggesting enhanced antioxidant status. Under all swimming conditions, the GSH: GSSG ratio was increased in the white muscle. Conversely, hepatic markers of oxidative stress were similar among groups. Results suggest that steady swimming at 0.8 BL⋅s<sup>-1</sup> enhanced the antioxidant status in red muscle which may be of relevance to improve the welfare of this cultured species.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":"51 2","pages":"58"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876196/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish Physiology and Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10695-025-01474-2","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Suitable swimming conditions can improve the growth and welfare of farmed fish. This study investigated how swimming affects immune and oxidative responses in European seabass (Dicentrarchus labrax), an important farmed fish species in Southern Europe. Thirty-two specimens were assigned into four experimental groups with the following conditions for 6 h: steady low (L, 0.8 body lengths (BL)⋅s-1); steady high (H, 2.2 BL⋅s-1); oscillating (O, 0.8-2.2 BL⋅s-1) swimming speeds; and control non-induced to swim (C, < 0.1 BL⋅s-1). The H group exhibited higher white blood cell counts and plasma cortisol levels compared to the C and L groups. However, innate immune parameters in plasma and skin mucus showed no differences between groups. Gene expression revealed an up-regulation of inflammatory cytokines (tnfα and il1β) and igf1 in the gills of fish from H and L groups, respectively, whilst no variations were observed in the head-kidney. In the skin, tnfα was up-regulated in the L group. Moreover, the H group showed increased superoxide dismutase and catalase activities and higher lipid peroxidation levels in red muscle. The L group had a higher ratio of reduced/oxidized glutathione (GSH: GSSG) in red muscle, suggesting enhanced antioxidant status. Under all swimming conditions, the GSH: GSSG ratio was increased in the white muscle. Conversely, hepatic markers of oxidative stress were similar among groups. Results suggest that steady swimming at 0.8 BL⋅s-1 enhanced the antioxidant status in red muscle which may be of relevance to improve the welfare of this cultured species.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Fish Physiology and Biochemistry
Fish Physiology and Biochemistry 农林科学-生化与分子生物学
CiteScore
5.60
自引率
6.90%
发文量
106
审稿时长
4 months
期刊介绍: Fish Physiology and Biochemistry is an international journal publishing original research papers in all aspects of the physiology and biochemistry of fishes. Coverage includes experimental work in such topics as biochemistry of organisms, organs, tissues and cells; structure of organs, tissues, cells and organelles related to their function; nutritional, osmotic, ionic, respiratory and excretory homeostasis; nerve and muscle physiology; endocrinology; reproductive physiology; energetics; biochemical and physiological effects of toxicants; molecular biology and biotechnology and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信