Tim Lehmann, Anton Visser, Tim Havers, Daniel Büchel, Jochen Baumeister
{"title":"Dynamic modulations of effective brain connectivity associated with postural instability during multi-joint compound movement on compliant surface.","authors":"Tim Lehmann, Anton Visser, Tim Havers, Daniel Büchel, Jochen Baumeister","doi":"10.1007/s00221-025-07039-2","DOIUrl":null,"url":null,"abstract":"<p><p>Random fluctuations in somatosensory signals affect the ability of effectively coordinating multimodal information pertaining to the postural state during movement. Therefore, this study aimed to investigate the impact of a compliant surface on cortico-cortical causal information flow during multi-joint compound movements. Fifteen healthy adults (7 female / 8 male, 25.9 ± 4.0 years) performed 5 × 20 repetitions of bodyweight squats on firm and compliant surface. Motor behavior was quantified by center of pressure (CoP) displacements, hip movement and the root mean square of the rectus femoris activity. Using source space analysis, renormalized partial directed coherence (rPDC) computed subject-level multivariate effective brain connectivity of sensorimotor nodes. Bootstrap statistics revealed significantly decreased medio-lateral CoP displacement (p < 0.001), significantly increased velocity of medio-lateral hip motion (p < 0.001) as well as significantly lower rectus femoris activity (p < 0.01) in the compliant surface condition. On the cortical level, rPDC showed significantly modulated information flow in theta and beta frequencies for fronto-parietal edges (p < 0.01) only during the concentric phase of the movement. The compliant surface led to increased difficulties controlling hip but not center of pressure motion in the medio-lateral plane. Moreover, a decreased activation of the prime movers accompanied by modulations of effective brain connectivity among fronto-central nodes may point to altered demands on sensorimotor information processing in presence of sensory noise when performing bodyweight squats on compliant surface. Further studies are needed to evaluate a potential benefit for athletic and clinical populations.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":"243 4","pages":"80"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876271/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00221-025-07039-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Random fluctuations in somatosensory signals affect the ability of effectively coordinating multimodal information pertaining to the postural state during movement. Therefore, this study aimed to investigate the impact of a compliant surface on cortico-cortical causal information flow during multi-joint compound movements. Fifteen healthy adults (7 female / 8 male, 25.9 ± 4.0 years) performed 5 × 20 repetitions of bodyweight squats on firm and compliant surface. Motor behavior was quantified by center of pressure (CoP) displacements, hip movement and the root mean square of the rectus femoris activity. Using source space analysis, renormalized partial directed coherence (rPDC) computed subject-level multivariate effective brain connectivity of sensorimotor nodes. Bootstrap statistics revealed significantly decreased medio-lateral CoP displacement (p < 0.001), significantly increased velocity of medio-lateral hip motion (p < 0.001) as well as significantly lower rectus femoris activity (p < 0.01) in the compliant surface condition. On the cortical level, rPDC showed significantly modulated information flow in theta and beta frequencies for fronto-parietal edges (p < 0.01) only during the concentric phase of the movement. The compliant surface led to increased difficulties controlling hip but not center of pressure motion in the medio-lateral plane. Moreover, a decreased activation of the prime movers accompanied by modulations of effective brain connectivity among fronto-central nodes may point to altered demands on sensorimotor information processing in presence of sensory noise when performing bodyweight squats on compliant surface. Further studies are needed to evaluate a potential benefit for athletic and clinical populations.
期刊介绍:
Founded in 1966, Experimental Brain Research publishes original contributions on many aspects of experimental research of the central and peripheral nervous system. The focus is on molecular, physiology, behavior, neurochemistry, developmental, cellular and molecular neurobiology, and experimental pathology relevant to general problems of cerebral function. The journal publishes original papers, reviews, and mini-reviews.