{"title":"Phytochemical Profiling, Bioactive Potential and In Silico Analysis of Kydia calycina Roxb. Leaf Extracts.","authors":"Nayan Kumar Sishu, Chinnadurai Immanuel Selvaraj","doi":"10.1002/cbdv.202403132","DOIUrl":null,"url":null,"abstract":"<p><p>Kydia calycina Roxb. has therapeutic properties, and it cures boils, skin infections, arthritis, ulcers, jaundice and lumbago. The leaf sample was extracted using methanol, ethanol and ethyl acetate. Phytochemical analyses, antioxidant, antibacterial, anti-inflammatory, antidiabetic and anticancer assays were performed. The effect of K. calycina leaf extract on the germination of radish and amaranth seeds was determined. The HRLC-MS analysis revealed that the ethanol, methanol and ethyl acetate extracts showed the presence of 46, 64 and 44 compounds, respectively. The ethanolic extract of K. calycina leaf exhibited the highest DPPH scavenging (IC<sub>50</sub> value = 28.37 ± 0.03 µg/mL), phosphomolybdenum reduction (IC<sub>50</sub> value = 62.11 ± 0.14 µg/mL), anti-inflammatory activity (IC<sub>50</sub> value = 60.38 ± 0.47 µg/mL), α-amylase inhibition (IC<sub>50</sub> value = 63.94 ± 0.55 µg/mL), α-glucosidase inhibition (IC<sub>50</sub> value = 25.54 ± 0.38 µg/mL) and antimicrobial activity against Pseudomonas aeruginosa and Staphylococcus aureus in comparison to the other extracts. The ethyl acetate extract showed cytotoxicity towards A549 cells with an IC<sub>50</sub> value of 22.06 ± 0.9 µg/mL. The germination percentage for radish and amaranth seeds were 63.33% ± 0.2% and 76.66% ± 0.1%, respectively. The in silico studies showed the binding affinity of the phytocompounds towards the protein targets for antibacterial, antidiabetic and anticancer activity.</p>","PeriodicalId":9878,"journal":{"name":"Chemistry & Biodiversity","volume":" ","pages":"e202403132"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry & Biodiversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cbdv.202403132","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Kydia calycina Roxb. has therapeutic properties, and it cures boils, skin infections, arthritis, ulcers, jaundice and lumbago. The leaf sample was extracted using methanol, ethanol and ethyl acetate. Phytochemical analyses, antioxidant, antibacterial, anti-inflammatory, antidiabetic and anticancer assays were performed. The effect of K. calycina leaf extract on the germination of radish and amaranth seeds was determined. The HRLC-MS analysis revealed that the ethanol, methanol and ethyl acetate extracts showed the presence of 46, 64 and 44 compounds, respectively. The ethanolic extract of K. calycina leaf exhibited the highest DPPH scavenging (IC50 value = 28.37 ± 0.03 µg/mL), phosphomolybdenum reduction (IC50 value = 62.11 ± 0.14 µg/mL), anti-inflammatory activity (IC50 value = 60.38 ± 0.47 µg/mL), α-amylase inhibition (IC50 value = 63.94 ± 0.55 µg/mL), α-glucosidase inhibition (IC50 value = 25.54 ± 0.38 µg/mL) and antimicrobial activity against Pseudomonas aeruginosa and Staphylococcus aureus in comparison to the other extracts. The ethyl acetate extract showed cytotoxicity towards A549 cells with an IC50 value of 22.06 ± 0.9 µg/mL. The germination percentage for radish and amaranth seeds were 63.33% ± 0.2% and 76.66% ± 0.1%, respectively. The in silico studies showed the binding affinity of the phytocompounds towards the protein targets for antibacterial, antidiabetic and anticancer activity.
期刊介绍:
Chemistry & Biodiversity serves as a high-quality publishing forum covering a wide range of biorelevant topics for a truly international audience. This journal publishes both field-specific and interdisciplinary contributions on all aspects of biologically relevant chemistry research in the form of full-length original papers, short communications, invited reviews, and commentaries. It covers all research fields straddling the border between the chemical and biological sciences, with the ultimate goal of broadening our understanding of how nature works at a molecular level.
Since 2017, Chemistry & Biodiversity is published in an online-only format.